Book Chapters

2022
Pierce NE, Dankowicz E. The Natural History of Caterpillar-Ant Associations. In: Marquis RJ, Koptur S Caterpillars in the Middle. Cham: Springer International Publishing ; 2022. pp. 319–391. Publisher's VersionAbstract
Abstract The caterpillars of many Lepidoptera are neither attacked nor tended by ants but nevertheless appear to be obligately ant-associated and benefit from the enemy-free space created by ants. Obligate myrmecophiles that do not attract ants through stridulatory or chemical signaling are limited to habitats where ants are reliably present for other reasons, either among ant-attended hemipterans, on ant-plants, or around ant nests. Particularly in the tropics, obligate ant associates that passively coexist with ants are more diverse than previously recognized, including, for example, hundreds of African species in the lycaenid subfamily Poritiinae. Mutualists and parasites of ants have been reported in eleven families: Tineidae, Tortricidae, Cyclotornidae, Coleophoridae, Crambidae, Erebidae, Notodontidae, Hesperiidae, Pieridae, Lycaenidae, and Riodinidae. Altogether, myrmecophily has originated at least 30 times in Lepidoptera, and many groups may remain undiscovered. The butterfly families Lycaenidae and Riodinidae contain the vast majority of ant-associated species: larvae of at least 3841 (71%) of the \textasciitilde5390 described Lycaenidae and 308 (20%) of the \textasciitilde1562 described Riodinidae are known or inferred to be ant-associated, and both families possess specialized, convergently developed exocrine glands and stridulatory devices to communicate with ants. Many caterpillar-ant relationships previously characterized as mutualisms may actually be parasitic, as caterpillars can manipulate ants and ultimately exert a fitness cost. In the family Lycaenidae, highly specialized and obligate ant associations are found largely in the Old World tropics, Australia, and Southern Africa, where the stoichiometry of soil micronutrients, particularly sodium and phosphorus, climate, host plants, and geography may all selectively shape caterpillar-ant associations.
pierce_dankowicz_book_chapter.pdf
2011
Pierce NE, Berry AJ. The herbivore's dilemma: Never enough nitrogen. In: Losos J (ed) In the Light of Evolution: Essays From the Laboratory and Field. 1st ed. Roberts & Company ; 2011. pp. 121-134. 2011_pierce_berry_herbivores_dilemma.pdf
2003
Campbell DL, Pierce NE. Phylogenetic relationships of the Riodinidae: Implications for the evolution of ant association. In: Butterflies as Model Systems. Chicago University Press ; 2003. pp. 395-408. 2003_campbell_and_pierce.pdf
2001
Pierce NE. Peeling the onion: Symbioses between ants and blue butterflies. In: Model systems in behavioral ecology. Princeton: Princeton University Press ; 2001. pp. 41-56. 2001_pierce_peeling_the_onion.pdf
1999
Pierce NE, Nash DR. The Imperial Blue, Jalmenus evagoras (Lycaenidae). In: The Biology of Australian Butterflies (Monographs on Australian Lepidoptera). Vol. 6. Sydney: CSIRO Press ; 1999. pp. 277-316. 1999_pierce_and_nash.pdf
1996
Costa JT, Pierce NE. Social evolution in the Lepidoptera: ecological context and communication in larval societies. In: Social competition and cooperation in insects and arachnids, Volume II: Evolution of sociality. Vol. 2. ; 1996. pp. 407-442. 1996_costa_and_pierce.pdf
1994
Kane M, Pierce NE. Diversity within diversity: molecular approaches to studying microbial interactions with insects. In: Molecular methods in ecology and evolution. Birkhauser Verlag ; 1994. pp. 509-524. kane_diversity.pdf
1993
Baylis M, Pierce NE. The effects of ant mutualism on the foraging and diet of lycaenid caterpillars. In: Caterpillars: Ecological and Evolutionary Constraints on Foraging. New York: Chapman and Hall ; 1993. pp. 404-421. 1993_baylis_and_pierce.pdf
1991
Pierce NE, Nash DR, Baylis M, Carper ER. Variation in the Attractiveness of Lycaenid Butterfly Larvae to Ants. In: Ant - Plant Interactions. Oxford: Oxford University Press ; 1991. pp. 131-142. 1991_pierce_et_al.pdf
1989
Pierce NE. Butterfly-ant mutualisms. In: Towards a more exact ecology. Oxford: Blackwell ; 1989. pp. 299-324. 1989_pierce.pdf
1988
Elgar MA, Pierce NE. Mating success and fecundity in an ant-tended lycaenid butterfly. In: Reproductive success: studies of selection and adaptation in contrasting breeding systems. Chicago: Chicago University Press ; 1988. pp. 59-75. 1988_elgar_and_pierce.pdf
1987
Pierce NE. The evolution and biogeography of associations between lycaenid butterflies and ants. In: Oxford Surveys in Evolutionary Biology . Vol. IV. Oxford University Press ; 1987. pp. 89-116.Abstract

Many organisms make a living from seratching each other's backs. and many survive at the expense of othcrs. Once a complex interaction has arisen between two organisms. what elfect can such a relationship have on their subsequcnt cvolution·! This pllpcr will consider thc evolutionary conscquences of ussocintions UIllOlIg Iycllcnid buttcrflics, their host plants, unts. purusitoids. lind prcdators. Thc Lycacllidac llfC cspecially intcrc.'1ting from an ccologicul and evolutionary pcrspcctivc because they exhibit dramatic variety in their life histories. The larvae of many species associate with ants, and these relationships can be parasitic. commensal, or mutualistic. larvae cun be carnivorous or hcrbivorous: and some species interact with many species of ants, whereas others are species-specific. It is partly because of this complexity and diversity that the lycaenidae have not been studied as intensively as other buUerny families, and I will discuss at least three problems that have hampered our understanding of their ecology and evolution. In particular. more must be learned about the nature of the exocrine secretions of lycaenid larvae, and whether they function to reward. appease, and/or deceive their associated ants. The association between lycaenids and ants has had several important evolutionary consequences, and I will show how these relate to the question of why there are so many species of Iycaenid buuernies. Finally. I will discuss an unresolved pattern in the biogeography oflycaenid buuernies: association with ants in general, and species-specific interactions in particular, are far more common among Iycaenids found in Ethiopian, Oriental. and Australasian regions than among those from the Holarctic. 

1987_pierce.pdf
1984
Pierce NE. Amplified species diversity: a case study of an Australian lycaenid butterfly and its attendant ants. In: Biology of butterflies. XI Symp R Entomol Soc (Lond). London: Academic Press ; 1984. pp. 197-200. 1984_pierce.pdf