Journal Articles: 2009 - 2000

Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences of the United States of America. 2009;106 :21236-21241.Abstract

Ants are a dominant feature of terrestrial ecosystems, yet we know little about the forces that drive their evolution. Recent findings illustrate that their diets range from herbivorous to predaceous, with "herbivores'' feeding primarily on exudates from plants and sap-feeding insects. Persistence on these nitrogen-poor food sources raises the question of how ants obtain sufficient nutrition. To investigate the potential role of symbiotic microbes, we have surveyed 283 species from 18 of the 21 ant subfamilies using molecular techniques. Our findings uncovered a wealth of bacteria from across the ants. Notable among the surveyed hosts were herbivorous "turtle ants'' from the related genera Cephalotes and Procryptocerus (tribe Cephalotini). These commonly harbored bacteria from ant-specific clades within the Burkholderiales, Pseudomonadales, Rhizobiales, Verrucomicrobiales, and Xanthomonadales, and studies of lab-reared Cephalotes varians characterized these microbes as symbiotic residents of ant guts. Although most of these symbionts were confined to turtle ants, bacteria from an ant-specific clade of Rhizobiales were more broadly distributed. Statistical analyses revealed a strong relationship between herbivory and the prevalence of Rhizobiales gut symbionts within ant genera. Furthermore, a consideration of the ant phylogeny identified at least five independent origins of symbioses between herbivorous ants and related Rhizobiales. Combined with previous findings and the potential for symbiotic nitrogen fixation, our results strongly support the hypothesis that bacteria have facilitated convergent evolution of herbivory across the ants, further implicating symbiosis as a major force in ant evolution.

Canfield MR, Chang S, Pierce NE. The double cloak of invisibility: phenotypic plasticity and larval decoration in a geometrid moth, Synchlora frondaria, across three diet treatments. Ecological Entomology. 2009;34 :412-414.Abstract

1. Crypsis is one of the main defences that insects use to avoid predators, and both the juveniles and adults of many geometrid moths are remarkable in their ability to blend into different host backgrounds. The larvae of Synchlora frondaria have two methods to achieve crypsis: phenotypic plasticity in colouration that enable them to hide more effectively on their host plants, and a self-decorating behaviour whereby the larvae camouflage themselves with materials from their host plants.2. Larvae of Synchlora frondaria reared on three different host plants showed systematic differences in relative growth rate, survivorship and larval colouration.3. Larval colouration varied across diet treatments in a way that was consistent with diet-induced phenotypic plasticity, and larvae also exhibited characteristic decorating behaviour on all three hosts.4. Larvae showed highest survivorship on Heterotheca subaxillaris (Asteraceae), and had significantly higher relative growth rates on H. subaxillaris (Asteraceae) and Lantana camara (Verbenaceae) than on Bejaria racemosa (Ericaceae).5. Synchlora frondaria provides an example of a species where both decorating behaviour and phenotypic plasticity in larval colouration produce a cryptic form that is remarkably responsive to its background.

Russell JA, Goldman-Huertas B, Moreau CS, Baldo L, Stahlhut JK, Werren JH, Pierce NE. Specialization and Geographic Isolation among Wolbachia Symbionts from Ants and Lycaenid Butterflies. Evolution. 2009;63 :624-640.Abstract

Wolbachia are the most prevalent and influential bacteria described among the insects to date. But despite their significance, we lack an understanding of their evolutionary histories. To describe the evolution of symbioses between Wolbachia and their hosts, we surveyed global collections of two diverse families of insects, the ants and lycaenid butterflies. In total, 54 Wolbachia isolates were typed using a Multi Locus Sequence Typing (MLST) approach, in which five unlinked loci were sequenced and analyzed to decipher evolutionary patterns. AMOVA and phylogenetic analyses demonstrated that related Wolbachia commonly infect related hosts, revealing a pattern of host association that was strongest among strains from the ants. A review of the literature indicated that horizontal transfer is most successful when Wolbachia move between related hosts, suggesting that patterns of host association are driven by specialization on a common physiological background. Aside from providing the broadest and strongest evidence to date for Wolbachia specialization, our findings also reveal that strains from New World ants differ markedly from those in ants from other locations. We, therefore, conclude that both geographic and phylogenetic barriers have promoted evolutionary divergence among these influential symbionts.

Canfield MR, Greene E, Moreau CS, Chen N, Pierce NE. Exploring phenotypic plasticity and biogeography in emerald moths: A phylogeny of the genus Nemoria (Lepidoptera: Geometridae). Molecular Phylogenetics and Evolution. 2008;49 :477-487.Abstract

The moth genus Nemoria (Lepidoptera: Geometridae) includes 134 described species whose larvae and adults display a considerable range of phenotypic plasticity in coloration and morphology. We reconstructed the phylogeny of 54 species of Nemoria and seven outgroups using characters from the mitochondrial genes, Cytochrome Oxidase I and II (COI and COII), and the nuclear gene, Elongation Factor-a (EF-1a). Maximum parsimony, maximum likelihood and Bayesian inference were used to infer the phylogeny. The 54 ingroup species represented 13 of the 15 recognized species groups of Nemoria [Ferguson, D.C., 1985. Fasc. 18.1, Geometroidea: Geometridae (in part). In: Dominick, R.B. (Ed.), The Moths of America North of Mexico, Fasc. 18.1. Wedge Entomological Research Foundation, Washington; Pitkin, L.M., 1993. Neotropical emerald moths of the genera Nemoria, Lissochlora and Chavarriella, with particular reference to the species of Costa Rica (Lepidoptera: Geometridae, Geometrinae). Bull. Br. Mus. Nat. Hist. 62, 39–159], and the seven outgroups came from four tribes of Geometrinae. These data support Nemoria as a monophyletic group and largely recover the species groupings proposed in previous taxonomic analyses using morphological characters. Phenotypic plasticity of larvae is not correlated with plasticity of adults among those species of Nemoria where life histories are known, and appears to be evolutionarily labile for both life history stages: Species exhibiting larval phenotypic plasticity, such as N. arizonaria and N. outina, are placed in several distinct clades, suggesting that this trait has evolved multiple times, and species displaying adult phenotypic plasticity are likewise distributed throughout the phylogeny. A comparative analysis of the biogeographic history of Nemoria supports a South American origin for the genus with multiple introductions into North America, and an application of published substitution rates to the phylogram provides an age estimate of 7.5 million years.

Travassos MA, Devries PJ, Pierce NE. A novel organ and mechanism for larval sound production in butterfly caterpillars: Eurybia elvina(Lepidoptera: Riodinidae). Tropical Lepidoptera Research. 2008;18 :20-23.Abstract

Abstract – Eurybia elvina larvae produce substrate-borne vibrations by grating a cervical membrane studded with teeth against hemispherical protuberances scattered along the surface of the head.

Mathew J, Travassos MA, Canfield M, Murawski D, Kitching RL, Pierce NE. The singing reaper: diet, morphology and vibrational signaling in the Nearctic species Feniseca tarquinius. Tropical Lepidoptera Research. 2008;18 :24-29.Abstract

Abstract – A survey at fourteen sites in Eastern North America of populations of the carnivorous lycaenid butterfly, Feniseca tarquinius, confirmed that the sole prey item on Alnus rugosa (Betulaceae) for this species in these regions was Paraprociphilus tessellatus (Homoptera: Aphidoidea: Pemphigidae). Overwhelmingly, these aphids were tended by ants in the subfamily Formicinae. These results are compiled with all earlier records of prey aphids, their host plants and attendant ants for this species. SEM examination of a 4th instar larva of F. tarquinius supported Cottrell’s (1984) observation that the dorsal nectary organ and tentacle organs are absent in the 4th instar of virtually all Miletinae. Larvae of F. tarquinius were found to produce substrate-borne vibrations that possess a long pulse length and narrow bandwidth when compared with other lycaenid calls. The possible function of these calls is briefly discussed.

Whiteman NK, Pierce NE. Delicious poison: genetics of Drosophila host plant preference. Trends in Ecology & Evolution. 2008;23 :473-478.Abstract

Insects use chemical cues to identify host plants, which suggests that chemosensory perception could be a target of natural selection during host specialization. Five papers using data from the 12 recently sequenced Drosophila genomes examined chemosensory gene function and evolution across specialist and generalist species. A functional study identifies odorant binding proteins that mediate loss of toxin avoidance in a specialist, and targeted genomic studies indicate specialists and island endemics lose chemosensory genes more rapidly than generalist and mainland relatives. Together, these studies suggest a mode of chemoreceptor evolution dominated by birth/death dynamics, coupled with a low level of potential positive selection.

Lohman DJ, Peggie D, Pierce NE, Meier R. Phylogeography and genetic diversity of a widespread Old World butterfly, Lampides boeticus (Lepidoptera: Lycaenidae). Bmc Evolutionary Biology. 2008;8.Abstract

Background: Evolutionary genetics provides a rich theoretical framework for empirical studies of phylogeography. Investigations of intraspecific genetic variation can uncover new putative species while allowing inference into the evolutionary origin and history of extant populations. With a distribution on four continents ranging throughout most of the Old World, Lampides boeticus ( Lepidoptera: Lycaenidae) is one of the most widely distributed species of butterfly. It is placed in a monotypic genus with no commonly accepted subspecies. Here, we investigate the demographic history and taxonomic status of this widespread species, and screen for the presence or absence of the bacterial endosymbiont Wolbachia.Results: We performed phylogenetic, population genetic, and phylogeographic analyses using 1799 bp of mitochondrial sequence data from 57 specimens collected throughout the species' range. Most of the samples(> 90%) were nearly genetically identical, with uncorrected pairwise sequence differences of 0 0.5% across geographic distances > 9,000 km. However, five samples from central Thailand, Madagascar, northern Australia and the Moluccas formed two divergent clades differing from the majority of samples by uncorrected pairwise distances ranging from 1.79-2.21%. Phylogenetic analyses suggest that L. boeticus is almost certainly monophyletic, with all sampled genes coalescing well after the divergence from three closely related taxa included for outgroup comparisons. Analyses of molecular diversity indicate that most L. boeticus individuals in extant populations are descended from one or two relatively recent population bottlenecks.Conclusion: The combined analyses suggest a scenario in which the most recent common ancestor of L. boeticus and its sister taxon lived in the African region approximately 7 Mya; extant lineages of L. boeticus began spreading throughout the Old World at least 1.5 Mya. More recently, expansion after population bottlenecks approximately 1.4 Mya seem to have displaced most of the ancestral polymorphism throughout its range, though at least two early-branching lineages still persist. One of these lineages, in northern Australia and the Moluccas, may have experienced accelerated differentiation due to infection with the bacterial endosymbiont Wolbachia, which affects reproduction. Examination of a haplotype network suggests that Australia has been colonized by the species several times. While there is little evidence for the existence of morphologically cryptic species, these results suggest a complex history affected by repeated dispersal events.

Hughes DP, Pierce NE, Boomsma JJ. Social insect symbionts: evolution in homeostatic fortresses. Trends in Ecology & Evolution. 2008;23 :672-677.Abstract

The massive environmentally buffered nests of some social insects can contain millions of individuals and a wide variety of parasites, commensals and mutualists. We suggest that the ways in which these homeostatic fortress environments affect the evolution of social insect symbionts are relevant for epidemiology, evolutionary biology and macroecology. We contend that specialized parasites will tend to become less virulent and mutualists less cooperative, compared to those associated with solitary or small-colony hosts. These processes are expected to contribute to the very high symbiont diversity observed in these nests. We hypothesize that biodiversity gradients in these hotspots might be less affected by abiotic latitudinal clines than gradients in neighboring 'control' habitats. We suggest several research lines to test these ideas.

Ramirez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature. 2007;448 :1042-1045.Abstract

Since the time of Darwin(1), evolutionary biologists have been fascinated by the spectacular adaptations to insect pollination exhibited by orchids. However, despite being the most diverse plant family on Earth(2), the Orchidaceae lack a definitive fossil record and thus many aspects of their evolutionary history remain obscure. Here we report an exquisitely preserved orchid pollinarium (of Meliorchis caribea gen. et sp. nov.) attached to the mesoscutellum of an extinct stingless bee, Proplebeia dominicana, recovered from Miocene amber in the Dominican Republic, that is 15-20 million years (Myr) old(3). This discovery constitutes both the first unambiguous fossil of Orchidaceae(4) and an unprecedented direct fossil observation of a plant-pollinator interaction(5,6). By applying cladistic methods to a morphological character matrix, we resolve the phylogenetic position of M. caribea within the extant subtribe Goodyerinae (subfamily Orchidoideae). We use the ages of other fossil monocots and M. caribea to calibrate a molecular phylogenetic tree of the Orchidaceae. Our results indicate that the most recent common ancestor of extant orchids lived in the Late Cretaceous (76-84 Myr ago), and also suggest that the dramatic radiation of orchids began shortly after the mass extinctions at the K/T boundary. These results further support the hypothesis of an ancient origin for Orchidaceae.

Quek SP, Davies SJ, Ashton PS, Itino T, Pierce NE. The geography of diversification in mutualistic ants: a gene's-eye view into the Neogene history of Sundaland rain forests. Molecular Ecology. 2007;16 :2045-2062.Abstract

We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests.

Quental TB, Patten MM, Pierce NE. Host plant specialization driven by sexual selection. American Naturalist. 2007;169 :830-836.Abstract

We propose a new mechanism based on sexual selection to explain the evolution of diet breadth in insects. More specifically, we show that mate choice in females for certain diet-derived male pheromones can be exploited by maternal effect genes that preferentially place offspring on a specific host plant, resulting in specialization. Our analytical model also suggests that the process is more likely to occur with species that show male-congregating mating strategies, such as lekking and hilltopping. The model offers a new explanation for the similarity between the composition of male lepidopteran pheromones and the chemistry of their host plants and also suggests a novel mechanism of host plant shift. This is the first time that sexual selection has been proposed to drive host plant specialization and the first time that a mechanism with selection acting solely on the adult stage has been shown to be capable of determining larval feeding habits.

Kandul NR, Lukhtanov VA, Pierce NE. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution. 2007;61 :546-559.Abstract

That chromosomal rearrangements may play an important role in maintaining postzygotic isolation between well-established species is part of the standard theory of speciation. However, little evidence exists on the role of karyotypic change in speciation itself-in the establishment of reproductive barriers between previously interbreeding populations. The large genus' Agrodiaetus (Lepidoptera: Lycaenidae) provides a model system to study this question. Agrodiaetus butterflies exhibit unusual interspecific diversity in chromosome number, from n = 10 to n = 134; in contrast, the majority of lycaenid butterflies have n = 23/24. We analyzed the evolution of karyotypic diversity by mapping chromosome numbers on a thoroughly sampled mitochondrial phylogeny of the genus. Karyotypic differences accumulate gradually between allopatric sister taxa, but more rapidly between sympatric sister taxa. Overall, sympatric sister taxa have a higher average karyotypic diversity than allopatric sister taxa. Differential fusion of diverged populations may account for this pattern because the degree of karyotypic difference acquired between allopatric populations may determine whether they will persist as nascent biological species in secondary sympatry. This study therefore finds evidence of a direct role for chromosomal rearrangements in the final stages of animal speciation. Rapid karyotypic diversification is likely to have contributed to the explosive speciation rate observed in Agrodiaetus, 1.6 species per million years.

Braby MF, Pierce NE, Vila R. Phylogeny and historical biogeography of the subtribe Aporiina (Lepidoptera : Pieridae): implications for the origin of Australian butterflies. Biological Journal of the Linnean Society. 2007;90 :413-440.Abstract

The Australian fauna is composed of several major biogeographical elements reflecting different spatial and temporal histories. Two groups of particular interest are the Gondwanan Element, reflecting an ancient origin in Gondwana or southern Gondwana (southern vicariance hypothesis), and the Asian Element, reflecting a more recent origin in Asia, Eurasia or Laurasia (northern dispersal hypothesis). Theories regarding the origin and evolution of butterflies (Hesperioidea, Papilionoidea) in Australia are controversial, with no clear consensus. Here, we investigate the phylogenetic and historical biogeographical relationships of the subtribe Aporiina, a widespread taxon with disjunct distributions in each of the major zoogeographical regions. Attention is paid to origins of the subtribe in the Australian Region for which several conflicting hypotheses have been proposed for the Old World genus Delias Hubner. Our phylogenetic reconstruction was based on analysis of fragments of two nuclear genes (elongation factor-1 alpha, wingless) and one mitochondrial gene (cytochrome oxidase subunit 1) for 30 taxa. Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference of the combined data set (2729 bp; 917 parsimony informative characters) recovered six major lineages within the monophyletic Aporiina, with the following topology: (Cepora + Prioneris + (Mylothris + (Aporia + Delias group + Catasticta group))). Given a probable age of origin of the stem-group near the Cretaceous/Tertiary boundary (69-54 Mya), followed by diversification of the crown-group in the early to mid Tertiary (57-45 Mya), we show that an origin of the Aporiina in either southern Gondwana or Laurasia is equally parsimonious, and that dispersal has played a major role in shaping the underlying phylogenetic pattern. We tentatively conclude that an origin in southern Gondwanan is more likely; however, neither hypothesis satisfactorily explains the present-day distribution, and additional lower-level phylogenies are needed to determine the directionality of dispersal events of several taxa and to reject one hypothesis over the other. Dispersal is inferred to have occurred primarily during cooler periods when land bridges or stepping-stones were available between many of the zoogeographical regions. (c) 2007 The Linnean Society of London.

Braby MF, Pierce NE. Systematics, biogeography and diversification of the Indo-Australian genus Delias Hubner (Lepidoptera : Pieridae): phylogenetic evidence supports an 'out-of-Australia' origin. Systematic Entomology. 2007;32 :2-25.Abstract

Two alternative hypotheses for the origin of butterflies in the Australian Region, that elements dispersed relatively recently from the Oriental Region into Australia (northern dispersal hypothesis) or descended from ancient stocks in Gondwana (southern vicariance hypothesis), were tested using methods of cladistic vicariance biogeography for the Delias group, a diverse and widespread clade in the Indo-Australian Region. A phylogenetic hypothesis of the twenty-four species-groups recognized currently in Delias and its sister genus Leuciacria is inferred from molecular characters generated from the nuclear gene elongation factor-1 alpha (EF-1 alpha) and the mitochondrial genes cytochrome oxidase subunits I and II (COI/COII) and NADH dehydrogenase 5 (ND5). Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference of the combined dataset (3888 bp, 1014 parsimony informative characters) confirmed the monophyly of Delias and recovered eight major lineages within the genus, informally designated the singhapura, belladonna, hyparete, chrysomelaena, eichhorni, cuningputi, belisama and nigrina clades. Species-group relationships within these clades are, in general, concordant with current systematic arrangements based on morphology. The major discrepancies concern the placement of the aganippe, belisama and chrysomelaena groups, as well as several species-groups endemic to mainland New Guinea. Two species (D. harpalyce (Donovan), D. messalina Arora) of uncertain group status are currently misplaced based on strong evidence of paraphyly, and are accordingly transferred to the nigrina and kummeri groups, respectively. Based on this phylogeny, a revised systematic classification is presented at the species-group level. An historical biogeographical analysis of the Delias group revealed that the most parsimonious reconstruction is an origin in the Australian Region, with at least seven dispersal events across Wallacea to the Oriental Region. The eight major clades of Delias appear to have diverged rapidly following complete separation of the Australian plate from Gondwana and its collision with the Asian plate in the late Oligocene. Further diversification and dispersal of Delias in the Miocene-Pliocene are associated with major geological and climatic changes that occurred in Australia-New Guinea during the late Tertiary. The 'out-of-Australia' hypothesis for the Delias group supports an origin of the Aporiina in southern Gondwana (southern vicariance hypothesis), which proposes that the ancestor of Delias + Leuciacria differentiated vicariantly on the Australian plate.

Lohman DJ, Liao Q, Pierce NE. Convergence of chemical mimicry in a guild of aphid predators. Ecological Entomology. 2006;31 :41-51.Abstract

Abstract. 1. A variety of insects prey on honeydew-producing Homoptera and many do so even in the presence of ants that tend, and endeavour to protect, these trophobionts from natural enemies. Few studies have explored the semiochemical mechanisms by which these predators circumvent attack by otherwise aggressive ants. 2. Ants use specific mixtures of cuticular hydrocarbons (CHCs) as recognition labels, but this simple mechanism is frequently circumvented by nest parasites that engage in ‘chemical mimicry’ of their host ants by producing or acquiring a critical suite of these CHCs. 3. Analysis of the CHCs from the North American woolly alder aphid, Prociphilus tessellatus (Homoptera: Aphididae), their tending ants, and aphid predators from three insect orders, Feniseca tarquinius (Lepidoptera: Lycaenidae), Chrysopa slossonae (Neuroptera: Chrysopidae), and Syrphus ribesii (Diptera: Syrphidae), showed that while the CHC profile of each predatory species was distinct, each was chemically more similar to the aphids than to either tending ant species. Further, the CHCs of each predator species were a subset of the compounds found in the aphids’ profile. 4. These results implicate CHCs as a recognition cue used by ants to discriminate trophobionts from potential prey and a probable mechanism by which trophobiont predators circumvent detection by aphids and their tending ants. 5. Although several features of the aphids’ CHC profile are shared among the chemically mimetic taxa, variation in the precision of mimicry among the members of this predatory guild demonstrates that a chemical mimic need not replicate every feature of its model.

Eastwood R, Pierce NE, Kitching RL, Hughes JM. Do ants enhance diversification in lycaenid butterflies? Phylogeographic evidence from a model myrmecophile, Jalmenus evagoras. Evolution. 2006;60 :315-327.Abstract

Abstract. The ant-tended Australian butterfly, Jalmenus evagoras, has been a model system for studying the ecology and evolution of mutualism. A phylogeographic analysis of mitochondrial DNA cytochrome oxidase I sequences from 242 butterflies (615 bp) and 66 attendant ants (585 bp) from 22 populations was carried out to explore the relationship between ant association and butterfly population structure. This analysis revealed 12 closely related butterfly haplotypes in three distinct clades roughly corresponding to three allopatric subpopulations of the butterflies. Minimal genetic diversity and widespread haplotypes within biogeographical regions suggest high levels of matrilineal gene flow. Attendant ants are significantly more diverse than was previously thought, with at least seven well-defined clades corresponding to independent morphological determinations, distributed throughout the range of the butterflies. Nested analysis of molecular variance showed that biogeography, host plant, and ant associate all contribute significantly in explaining variation in butterfly genetic diversity, but these variables are not independent of one another. Major influences appear to come from fragmentation due to large-scale biogeographical barriers, and diversification following a shift in habitat preference. A consequence of such a shift could be codiversification of the butterfly with habitatadapted ants, resulting in apparent phylogenetic concordance between butterflies and ants. The implications of these results are discussed in terms of possible effects of ant attendance on the diversification of Lycaenidae as a whole.

Braby MF, Villa R, Pierce NE. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zoological Journal of the Linnaean Society. 2006;147 :239-275.Abstract

The systematic relationships of the butterfly family Pieridae are poorly understood. Much of our current understanding is based primarily on detailed morphological observations made 50–70 years ago. However, the family and its putative four subfamilies and two tribes, have rarely been subjected to rigorous phylogenetic analysis. Here we present results based on an analysis of molecular characters used to reconstruct the phylogeny of the Pieridae in order to infer higher-level classification above the generic level and patterns of historical biogeography. Our sample contained 90 taxa representing 74 genera and six subgenera, or 89% of all genera recognized in the family. Three complementary approaches were employed: (1) a combined analysis of a 30 taxon subset for sequences from four gene regions, including elongation factor-1 alpha (EF-1α), wingless, cytochrome oxidase subunit I (COI), and 28S (3675 bp, 1031 parsimony-informative characters), mainly to establish higher-level relationships, (2) a single-gene analysis of the 90 taxon data set for sequences from EF-1α (1066 bp, 364 parsimony-informative characters), mainly to establish lower-level relationships, and (3) an all available data analysis of the entire data set for sequences from the four genes, to recover both deep and shallow nodes. Analyses using maximum parsimony, maximum likelihood and Bayesian inference provided similar results. All supported monophyly for the four subfamilies but not for the two tribes, with the Anthocharidini polyphyletic and the Pierini paraphyletic. The combined and all available data analyses support the following relationships among the subfamilies: ((Pseudopontiinae + Dismorphiinae) + (Coliadinae + Pierinae)), corroborating Ehrlich’s 1958 phenetic hypothesis. On the basis of these analyses, and additional morphological and life history evidence, we propose a reclassification of the subfamily Pierinae into two tribes (Anthocharidini s.s., Pierini s.s.) and two informal groups (Colotis group, Leptosia), with the tribe Pierini s.s. subdivided into three subtribes (Appiadina, Pierina, Aporiina) and three genera (Elodina, Dixeia, Belenois) of uncertain status (incertae sedis). The combined and all available data analyses support the following relationships among the Pierinae: (Colotis group + Anthocharidini s.s. + Leptosia + (Elodina + ((Dixeia + Belenois) + Appiadina + Pierina + Aporiina))). Application of a molecular clock calibrated using fossil evidence and semiparametric rate smoothing suggests that divergence between the Pierina and Aporiina occurred no later than the Palaeocene (> 60 Myr). The minimum estimate for the age of the crown-group of the Pieridae was 112–82 Myr, with a mean of 95 Myr. A historical biogeographical hypothesis is proposed to explain the present-day distribution of the clade Pseudopontiinae + Dismorphiinae, which argues for an origin of the two subfamilies in western Gondwana (Africa + South America) during the Late Cretaceous.

Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. Phylogeny of the ants: Diversification in the age of angiosperms. Science. 2006;312 :101-104.Abstract

We present a large-scale molecular phylogeny of the ants (Hymenoptera: Formicidae), based on 4.5 kilobases of sequence data from six gene regions extracted from 139 of the 288 described extant genera, representing 19 of the 20 subfamilies. All but two subfamilies are recovered as monophyletic. Divergence time estimates calibrated by minimum age constraints from 43 fossils indicate that most of the subfamilies representing extant ants arose much earlier than previously proposed but only began to diversify during the Late Cretaceous to Early Eocene. This period also witnessed the rise of angiosperms and most herbivorous insects.

Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proceedings of the National Academy of Sciences of the United States of America. 2005;102 :1791-1796.Abstract

Many pathogens are virulent because they specifically interfere with host defense responses and therefore can proliferate. Here, we report that virulent strains of the bacterial phytopathogen Pseudomonas syringae induce systemic susceptibility to secondary A syringae infection in the host plant Arabidopsis thaliana. This systemic induced susceptibility (SIS) is in direct contrast to the well studied avirulence/R gene-dependent resistance response known as the hypersensitive response that elicits systemic acquired resistance. We show that A syringae-elicited SIS is caused by the production of coronatine (COR), a pathogen -derived functional and structural mimic of the phytohormone jasmonic acid (JA). These data suggest that SIS may be a consequence of the previously described mutually antagonistic interaction between the salicylic acid and JA signaling pathways. Virulent P. syringae also has the potential to induce net systemic susceptibility to herbivory by an insect (Trichoplusia ni, cabbage looper), but this susceptibility is not caused by COR. Rather, consistent with its role as a A mimic, COR induces systemic resistance to T. ni. These data highlight the complexity of defense signaling interactions among plants, pathogens, and herbivores.