Phylogeny

2023
Sierra-Botero L, Calonje M, Robbins RK, Rosser N, Pierce NE, López-Gallego C, Valencia-Montoya WA. Cycad phylogeny predicts host plant use of Eumaeus butterflies. Ecology and Evolution. 2023;13 (4) :e9978. Publisher's VersionAbstract
Abstract Eumaeus butterflies are obligate herbivores of Zamia, the most diverse neotropical genus of cycads. Eumaeus?Zamia interactions have been characterized mainly for species distributed in North and Central America. However, larval host plant use by the southern Eumaeus clade remains largely unknown, precluding a comprehensive study of co-evolution between the genera. Here, we combine fieldwork with museum and literature surveys to expand herbivory records for Eumaeus from 21 to 38 Zamia species. We inferred a time-calibrated phylogeny of Eumaeus to test for distinct macroevolutionary scenarios of larval host plant conservatism and co-evolution. We found a remarkable coincidence between Eumaeus and Zamia diversification, with the butterfly stem group diverging at the same time as the most recent radiation of Zamia in the Miocene. Cophylogenetic reconciliation analyses show a strong cophylogenetic signal between cycads and their butterfly herbivores. Bipartite model-based approaches indicate that this is because closely related Zamia species are used by the same Eumaeus species, suggesting larval host plant resource tracking by the butterfly herbivores. Our results highlight a case of tight evolution between Eumaeus butterflies and cycads, pointing to the generality of correlated evolution and phylogenetic tracking in plant?herbivore interactions across seed plants.
ecology_and_evolution_-_2023_-_sierra-botero_-_cycad_phylogeny_predicts_host_plant_use_of_eumaeus_butterflies.pdf
Kawahara AY, Storer C, Carvalho APaula S, Plotkin DM, Condamine FL, Braga MP, Ellis EA, St Laurent RA, Li X, Barve V, et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. 2023;7 (6) :903 - 913. Publisher's VersionAbstract
Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
s41559-023-02041-9.pdf
Espeland M, Chazot N, Condamine FL, Lemmon AR, Lemmon EM, Pringle E, Heath A, Collins S, Tiren W, Mutiso M, et al. Rapid radiation of ant parasitic butterflies during the Miocene aridification of Africa. Ecology and Evolution. 2023;13 (5) :e10046. Publisher's VersionAbstract
Abstract Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time-calibrated phylogeny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section (Poloyommatini). We estimated ancestral areas across the phylogeny with process-based biogeographical models and diversification rates relying on time-variable and clade-heterogeneous birth-death models. The Euchrysops section originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non-parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto-predaceous Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of the Euchrysops section, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto-predaceous life history in species of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.
ecology_and_evolution_-_2023_-_espeland_-_rapid_radiation_of_ant_parasitic_butterflies_during_the_miocene_aridification_of.pdf
Boyle J, Espeland M, Sáfián S, Ducarme R, Gardiner A, Coleman J, Heath A, Fisher S, Collins S, Martins D, et al. Phylogeny of the Poritiinae (Lepidoptera: Lycaenidae), butterflies with ant associations and unusual lichenivorous diets. Systematic Entomology. 2023. Publisher's Version systematic_entomology_-_2023_-_boyle_-_phylogeny_of_the_poritiinae_lepidoptera_lycaenidae_butterflies_with_ant_1.pdf
2022
Talavera G, Lukhtanov V, Pierce NE, Vila R. DNA Barcodes Combined with Multilocus Data of Representative Taxa Can Generate Reliable Higher-Level Phylogenies Bond J. Systematic Biology. 2022;71 (2) :382–395. Publisher's VersionAbstract
Abstract Taxa are frequently labeled incertae sedis when their placement is debated at ranks above the species level, such as their subgeneric, generic, or subtribal placement. This is a pervasive problem in groups with complex systematics due to difficulties in identifying suitable synapomorphies. In this study, we propose combining DNA barcodes with a multilocus backbone phylogeny in order to assign taxa to genus or other higher-level categories. This sampling strategy generates molecular matrices containing large amounts of missing data that are not distributed randomly: barcodes are sampled for all representatives, and additional markers are sampled only for a small percentage. We investigate the effects of the degree and randomness of missing data on phylogenetic accuracy using simulations for up to 100 markers in 1000-tips trees, as well as a real case: the subtribe Polyommatina (Lepidoptera: Lycaenidae), a large group including numerous species with unresolved taxonomy. Our simulation tests show that when a strategic and representative selection of species for higher-level categories has been made for multigene sequencing (approximately one per simulated genus), the addition of this multigene backbone DNA data for as few as 5–10% of the specimens in the total data set can produce high-quality phylogenies, comparable to those resulting from 100% multigene sampling. In contrast, trees based exclusively on barcodes performed poorly. This approach was applied to a 1365-specimen data set of Polyommatina (including ca. 80% of described species), with nearly 8% of representative species included in the multigene backbone and the remaining 92% included only by mitochondrial COI barcodes, a phylogeny was generated that highlighted potential misplacements, unrecognized major clades, and placement for incertae sedis taxa. We use this information to make systematic rearrangements within Polyommatina, and to describe two new genera. Finally, we propose a systematic workflow to assess higher-level taxonomy in hyperdiverse groups. This research identifies an additional, enhanced value of DNA barcodes for improvements in higher-level systematics using large data sets. [Birabiro; DNA barcoding; incertae sedis; Kipepeo; Lycaenidae; missing data; phylogenomic; phylogeny; Polyommatina; supermatrix; systematics; taxonomy]
talavera_barcode_2022.pdf
2021
Valencia-Montoya WA, Quental TB, Tonini JFR, Talavera G, Crall JD, Lamas G, Busby RC, Carvalho APS, Morais AB, Oliveira Mega N, et al. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc Biol Sci. 2021;288 (1950) :20202512.Abstract
Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking. Here, we infer a comprehensive, time-calibrated phylogeny from 379 loci for 187 species representing 91% of the 87 described genera. Eumaeini is a monophyletic group that originated in the late Oligocene and underwent rapid radiation in the Neotropics. We examined specimens of 818 of the 1096 described species (75%) and found that secondary sexual traits are present in males of 91% of the surveyed species. Scent pads and scent patches on the wings and brush organs associated with the genitalia were probably present in the common ancestor of Eumaeini and are widespread throughout the tribe. Brush organs and scent pads are negatively correlated across the phylogeny, exhibiting a trade-off in which lineages with brush organs are unlikely to regain scent pads and vice versa. In contrast, scent patches seem to facilitate the evolution of scent pads, although they are readily lost once scent pads have evolved. Our results illustrate the complex interplay between natural and sexual selection in the origin and maintenance of multiple male secondary sexual characteristics and highlight the potential role of sexual selection spurring diversification in this lineage.
rspb.2020.2512.pdf
2018
Toussaint EFA, Breinholt JW, Earl C, Warren AD, Brower JVZ, Yago M, Dexter KM, Espeland M, Pierce NE, Lohman DJ, et al. Anchored phylogenomics illuminates the skipper butterfly tree of life. BMC Evolutionary Biology. 2018. touissant_et_al_2018_s12862-018-1216-z-2.pdf
Kawahara AY, Breinholt JW, Espeland M, Storer C, Plotkin D, Dexter KM, Toussaint EFA, St Laurent RA, Brehm G, Vargas S, et al. Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) based on a new 13-locus target capture probe set. Molecular Phylogenetics and Evolution. 2018. kawahara_moth.pdf
Espeland M, Breinholt J, Willmott KR, Warren AD, Vila R, Toussaint EFA, Maunsell SC, Kwaku AP, Talavera G, Eastwood R, et al. Comprehensive higher-level phylogeny of butterflies (Papilionoidea) inferred from genomic data. Current Biology. 2018;28 :770-778. Publisher's Version espeland_et_al_2018_-s2.0-s0960982218300940-main.pdf
2016
Janda MF, Matos-Maravi P, Borovanska M, Zima Jr J, Youngerman E, Pierce NE. Phylogeny and population genetic structure of the ant genus Acropyga (Hymenoptera : Formicidae) in Papua New Guinea. Invertebrate Systematics. 2016;30 :28-40. 2016_Janda_et_al.pdf
2015
Espeland M, Hall JPW, DeVries PJ, Lees DC, Cornwall M, Hsu YF, Wu LW, Campbell DL, Talavera G, Vila R, et al. Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution. 2015;93 :296-306.Abstract

We present the first dated higher-level phylogenetic and biogeographic analysis of the butterfly family Riodinidae. This family is distributed worldwide, but more than 90% of the c. 1500 species are found in the Neotropics, while the c. 120 Old World species are concentrated in the Southeast Asian tropics, with minor Afrotropical and Australasian tropical radiations, and few temperate species. Morphologically based higher classification is partly unresolved, with genera incompletely assigned to tribes. Using 3666 bp from one mitochondrial and four nuclear markers for each of 23 outgroups and 178 riodinid taxa representing all subfamilies, tribes and subtribes, and 98 out of 145 described genera of riodinids, we estimate that Riodinidae split from Lycaenidae about 96 Mya in the mid-Cretaceous and started to diversify about 81 Mya. The Riodinidae are monophyletic and originated in the Neotropics, most likely in lowland proto-Amazonia. Neither the subfamily Euselasiinae nor the Nemeobiinae are monophyletic as currently constituted. The enigmatic, monotypic Neotropical genera Styx and Corrachia (most recently treated in Euselasiinae: Corrachiini) are highly supported as derived taxa in the Old World Nemeobiinae, with dispersal most likely occurring across the Beringia land bridge during the Oligocene. Styx and Corrachia, together with all other nemeobiines, are the only exclusively Primulaceae-feeding riodinids. The steadily increasing proliferation of the Neotropical Riodininae subfamily contrasts with the decrease in diversification in the Old World, and may provide insights into factors influencing the diversification rate of this relatively ancient clade of Neotropical insects. (C) 2015 Elsevier Inc. All rights reserved.

2015_espeland_et_al.pdf
Boyle JH, Kaliszewska ZA, Espeland M, Suderman TR, Fleming J, Heath A, Pierce NE. Phylogeny of the Aphnaeinae: myrmecophilous African butterflies with carnivorous and herbivorous life histories. Systematic Entomology. 2015;40 :169-182.Abstract

The Aphnaeinae (Lepidoptera: Lycaenidae) are a largely African subfamily of 278 described species that exhibit extraordinary life-history variation. The larvae of these butterflies typically form mutualistic associations with ants, and feed on a wide variety of plants, including 23 families in 19 orders. However, at least one species in each of 9 of the 17 genera is aphytophagous, parasitically feeding on the eggs, brood or regurgitations of ants. This diversity in diet and type of symbiotic association makes the phylogenetic relations of the Aphnaeinae of particular interest. A phylogenetic hypothesis for the Aphnaeinae was inferred from 4.4kb covering the mitochondrial marker COI and five nuclear markers (wg, H3, CAD, GAPDH and EF1) for each of 79 ingroup taxa representing 15 of the 17 currently recognized genera, as well as three outgroup taxa. Maximum Parsimony, Maximum Likelihood and Bayesian Inference analyses all support Heath's systematic revision of the clade based on morphological characters. Ancestral range inference suggests an African origin for the subfamily with a single dispersal into Asia. The common ancestor of the aphnaeines likely associated with myrmicine ants in the genus Crematogaster and plants of the order Fabales.

2015_boyle_et_al.pdf
Kaliszewska ZA, Lohman DJ, Sommer K, Adelson G, Rand DB, Mathew J, Talavera G, Pierce NE. When caterpillars attack: Biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution. 2015;69 :571-588.Abstract

Of the four most diverse insect orders, Lepidoptera contains remarkably few predatory and parasitic species. Although species with these habits have evolved multiple times in moths and butterflies, they have rarely been associated with diversification. The wholly aphytophagous subfamily Miletinae (Lycaenidae) is an exception, consisting of nearly 190 species distributed primarily throughout the Old World tropics and subtropics. Most miletines eat Hemiptera, although some consume ant brood or are fed by ant trophallaxis. A well-resolved phylogeny inferred using 4915 bp from seven markers sampled from representatives of all genera and nearly one-third the described species was used to examine the biogeography and evolution of biotic associations in this group. Biogeographic analyses indicate that Miletinae likely diverged from an African ancestor near the start of the Eocene, and four lineages dispersed between Africa and Asia. Phylogenetic constraint in prey selection is apparent at two levels: related miletine species are more likely to feed on related Hemiptera, and related miletines are more likely to associate with related ants, either directly by eating the ants, or indirectly by eating hemipteran prey that are attended by those ants. These results suggest that adaptations for host ant location by ovipositing female miletines may have been retained from phytophagous ancestors that associated with ants mutualistically.

2015_kaliszewska_et_al.pdf
2014
Price SL, Powell S, Kronauer DJC, Tran LAP, Pierce NE, Wayne RK. Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. Journal of Evolutionary Biology. 2014;27 :242-258.Abstract

Ecological opportunity, defined as access to new resources free from competitors, is thought to be a catalyst for the process of adaptive radiation. Much of what we know about ecological opportunity, and the larger process of adaptive radiation, is derived from vertebrate diversification on islands. Here, we examine lineage diversification in the turtle ants (Cephalotes), a species-rich group of ants that has diversified throughout the Neotropics. We show that crown group turtle ants originated during the Eocene (around 46 mya), coincident with global warming and the origin of many other clades. We also show a marked lineage-wide slowdown in diversification rates in the Miocene. Contrasting this overall pattern, a species group associated with the young and seasonally harsh Chacoan biogeographic region underwent a recent burst of diversification. Subsequent analyses also indicated that there is significant phylogenetic clustering within the Chacoan region and that speciation rates are highest there. Together, these findings suggest that recent ecological opportunity, from successful colonization of novel habitat, may have facilitated renewed turtle ant diversification. Our findings highlight a central role of ecological opportunity within a successful continental radiation.

2014_price_et_al.pdf
Wahlberg N, Rota J, Braby MF, Pierce NE, Wheat CW. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zoologica Scripta. 2014;43 :641-650.Abstract

The butterfly family Pieridae comprises approximately 1000 described species placed in 85 genera, but the higher classification has not yet been settled. We used molecular data from eight gene regions (one mitochondrial and seven nuclear protein-coding genes) comprising a total of similar to 6700bp from 96 taxa to infer a well-supported phylogenetic hypothesis for the family. Based on this hypothesis, we revise the higher classification for all pierid genera. We resurrect the tribe Teracolini stat. rev. in the subfamily Pierinae to include the genera Teracolus, Pinacopteryx, Gideona, Ixias, Eronia, Colotis and most likely Calopieris. We transfer Hebomoia to the tribe Anthocharidini and assign the previously unplaced genera Belenois and Dixeia to the subtribe Aporiina. Three lineages near the base of Pierinae (Leptosia, Elodina and Nepheronia + Pareronia) remain unplaced. For each of these, we describe and delineate new tribes: Elodinini Braby tribus nova, Leptosiaini Braby tribus nova and Nepheroniini Braby tribus nova. The proposed higher classification is based on well-supported monophyletic groups and is likely to remain stable even with the addition of more data.

2014_wahlberg_et_al.pdf
2013
Talavera G, Lukhtanov VA, Rieppel L, Pierce NE, Vila R. In the shadow of phylogenetic uncertainty: The recent diversification of Lysandra butterflies through chromosomal change. Molecular Phylogenetics and Evolution. 2013;69 :469-478.Abstract

The phylogeny of the butterfly genus Lysandra (Lycaenidae, Polyommatinae) has been intractable using both molecular and morphological characters, which could be a result of speciation due to karyotype instability. Here we reconstruct the phylogeny of the group using multi-locus coalescent-based methods on seven independent genetic markers. While the genus is ca. 4.9 Mya old, the diversification of the extant lineages was extremely recent (ca. 1.5 Mya) and involved multiple chromosomal rearrangements. We find that relationships are uncertain due to both incomplete lineage sorting and hybridization. Minimizing the impact of reticulation in inferring the species tree by testing for mitochondria] introgression events yields a partially resolved tree with three main supported clades: L. punctifera + L. bellargus, the corydonius taxa, and L coridon + the Iberian taxa, plus three independent lineages without apparently close relatives (L. ossmar, L syriaca and L. dezina). Based on these results and new karyotypic data, we propose a rearrangement recognizing ten species within the genus. Finally, we hypothesize that chromosomal instability may have played a crucial role in the Lysandra recent diversification. New chromosome rearrangements might be fixed in populations after severe bottlenecks, which at the same time might promote rapid sorting of neutral molecular markers. We argue that population bottlenecks might be a prerequisite for chromosomal speciation in this group. (C) 2013 Elsevier Inc. All rights reserved.

2013_talavera_et_al.pdf 2013_talavera_et_al_supplement.pdf

Pages