Predaceous and Parasitic Lepidoptera

2023
Espeland M, Chazot N, Condamine FL, Lemmon AR, Lemmon EM, Pringle E, Heath A, Collins S, Tiren W, Mutiso M, et al. Rapid radiation of ant parasitic butterflies during the Miocene aridification of Africa. Ecology and Evolution. 2023;13 (5) :e10046. Publisher's VersionAbstract
Abstract Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time-calibrated phylogeny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section (Poloyommatini). We estimated ancestral areas across the phylogeny with process-based biogeographical models and diversification rates relying on time-variable and clade-heterogeneous birth-death models. The Euchrysops section originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non-parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto-predaceous Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of the Euchrysops section, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto-predaceous life history in species of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.
ecology_and_evolution_-_2023_-_espeland_-_rapid_radiation_of_ant_parasitic_butterflies_during_the_miocene_aridification_of.pdf
2022
Pierce NE, Dankowicz E. Behavioral, ecological and evolutionary mechanisms underlying caterpillar-ant symbioses. Current Opinion in Insect Science. 2022;52 :100898. Publisher's Version dankowicz_caterpillar_ant_2022.pdf
Pierce NE, Dankowicz E. The Natural History of Caterpillar-Ant Associations. In: Marquis RJ, Koptur S Caterpillars in the Middle. Cham: Springer International Publishing ; 2022. pp. 319–391. Publisher's VersionAbstract
Abstract The caterpillars of many Lepidoptera are neither attacked nor tended by ants but nevertheless appear to be obligately ant-associated and benefit from the enemy-free space created by ants. Obligate myrmecophiles that do not attract ants through stridulatory or chemical signaling are limited to habitats where ants are reliably present for other reasons, either among ant-attended hemipterans, on ant-plants, or around ant nests. Particularly in the tropics, obligate ant associates that passively coexist with ants are more diverse than previously recognized, including, for example, hundreds of African species in the lycaenid subfamily Poritiinae. Mutualists and parasites of ants have been reported in eleven families: Tineidae, Tortricidae, Cyclotornidae, Coleophoridae, Crambidae, Erebidae, Notodontidae, Hesperiidae, Pieridae, Lycaenidae, and Riodinidae. Altogether, myrmecophily has originated at least 30 times in Lepidoptera, and many groups may remain undiscovered. The butterfly families Lycaenidae and Riodinidae contain the vast majority of ant-associated species: larvae of at least 3841 (71%) of the \textasciitilde5390 described Lycaenidae and 308 (20%) of the \textasciitilde1562 described Riodinidae are known or inferred to be ant-associated, and both families possess specialized, convergently developed exocrine glands and stridulatory devices to communicate with ants. Many caterpillar-ant relationships previously characterized as mutualisms may actually be parasitic, as caterpillars can manipulate ants and ultimately exert a fitness cost. In the family Lycaenidae, highly specialized and obligate ant associations are found largely in the Old World tropics, Australia, and Southern Africa, where the stoichiometry of soil micronutrients, particularly sodium and phosphorus, climate, host plants, and geography may all selectively shape caterpillar-ant associations.
pierce_dankowicz_book_chapter.pdf
2020
Braby MF, Espeland M, Müller CJ, Eastwood R, Lohman DJ, Kawahara AY, Maunsell SC, Pierce NE. Molecular phylogeny of the tribe Candalidini (Lepidoptera: Lycaenidae): systematics, diversification and evolutionary history. Systematic Entomology. 2020;45 (3) :703-722. braby_candalidini_2020.pdf
2019
Whitaker MRL, Baker CCM, Salzman SM, Martins DJ, Pierce NE. Combining stable isotope analysis with DNA metabarcoding improves inferences of trophic ecology. PLOS ONE. 2019. whitaker_isotope_2019.pdf
2016
Pohl S, Frederickson ME, Elgar MA, Pierce NE. Colony Diet Influences Ant Worker Foraging and Attendance of Myrmecophilous Lycaenid Caterpillars. Frontiers in Ecology and Evolution. 2016;4 (114). Publisher's Version fevo-04-00114.pdf
Whitaker MRL, Salzman S, Sanders J, Kaltenpoth M, Pierce NE. Microbial communities of lycaenid butterflies do not correlate with larval diet. Frontiers in Microbiology. 2016;7 (1920). Publisher's Version fmicb-07-01920.pdf
Dupont ST, Zemeitat DS, Lohman DJ, Pierce NE. The setae of parasitic Liphyra brassolis butterfly larvae form a flexible armour for resisting attack by their ant hosts (Lycaenidae: Lepidoptera). Biological Journal of the Linnean Society. 2016;117 :607-619. 2016_dupont_et_al.pdf
2015
Kaliszewska ZA, Lohman DJ, Sommer K, Adelson G, Rand DB, Mathew J, Talavera G, Pierce NE. When caterpillars attack: Biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution. 2015;69 :571-588.Abstract

Of the four most diverse insect orders, Lepidoptera contains remarkably few predatory and parasitic species. Although species with these habits have evolved multiple times in moths and butterflies, they have rarely been associated with diversification. The wholly aphytophagous subfamily Miletinae (Lycaenidae) is an exception, consisting of nearly 190 species distributed primarily throughout the Old World tropics and subtropics. Most miletines eat Hemiptera, although some consume ant brood or are fed by ant trophallaxis. A well-resolved phylogeny inferred using 4915 bp from seven markers sampled from representatives of all genera and nearly one-third the described species was used to examine the biogeography and evolution of biotic associations in this group. Biogeographic analyses indicate that Miletinae likely diverged from an African ancestor near the start of the Eocene, and four lineages dispersed between Africa and Asia. Phylogenetic constraint in prey selection is apparent at two levels: related miletine species are more likely to feed on related Hemiptera, and related miletines are more likely to associate with related ants, either directly by eating the ants, or indirectly by eating hemipteran prey that are attended by those ants. These results suggest that adaptations for host ant location by ovipositing female miletines may have been retained from phytophagous ancestors that associated with ants mutualistically.

2015_kaliszewska_et_al.pdf
2008
Mathew J, Travassos MA, Canfield M, Murawski D, Kitching RL, Pierce NE. The singing reaper: diet, morphology and vibrational signaling in the Nearctic species Feniseca tarquinius. Tropical Lepidoptera Research. 2008;18 :24-29.Abstract

Abstract – A survey at fourteen sites in Eastern North America of populations of the carnivorous lycaenid butterfly, Feniseca tarquinius, confirmed that the sole prey item on Alnus rugosa (Betulaceae) for this species in these regions was Paraprociphilus tessellatus (Homoptera: Aphidoidea: Pemphigidae). Overwhelmingly, these aphids were tended by ants in the subfamily Formicinae. These results are compiled with all earlier records of prey aphids, their host plants and attendant ants for this species. SEM examination of a 4th instar larva of F. tarquinius supported Cottrell’s (1984) observation that the dorsal nectary organ and tentacle organs are absent in the 4th instar of virtually all Miletinae. Larvae of F. tarquinius were found to produce substrate-borne vibrations that possess a long pulse length and narrow bandwidth when compared with other lycaenid calls. The possible function of these calls is briefly discussed.

2008_mathew_et_al.pdf
2004
Als TD, Vila R, Kandul NP, Nash DR, Yen SH, Hsu YF, Mignault AA, Boomsma JJ, Pierce NE. The evolution of alternative parasitic life histories in large blue butterflies. Nature. 2004;432 :386-390.Abstract

Large blue (Maculinea) butterflies are highly endangered throughout the Palaearctic region, and have been the focus of intense conservation research(1-3). In addition, their extraordinary parasitic lifestyles make them ideal for studies of life history evolution. Early instars consume flower buds of specific host plants, but later instars live in ant nests where they either devour the brood (predators), or are fed mouth-to-mouth by the adult ants (cuckoos). Here we present the phylogeny for the group, which shows that it is a monophyletic clade nested within Phengaris, a rare Oriental genus whose species have similar life histories(4,5). Cuckoo species are likely to have evolved from predatory ancestors. As early as five million years ago, two Maculinea clades diverged, leading to the different parasitic strategies seen in the genus today. Contrary to current belief, the two recognized cuckoo species show little genetic divergence and are probably a single ecologically differentiated species(6-10). On the other hand, some of the predatory morphospecies exhibit considerable genetic divergence and may contain cryptic species. These findings have important implications for conservation and reintroduction efforts.

2004_als_et_al.pdf
2002
Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annual Review of Entomology. 2002;47 :733-771.Abstract

The estimated 6000 species of Lycaenidae account for about one third of all Papilionoidea. The majority of lycaenids have associations with ants that can be facultative or obligate and range from mutualism to parasitism. Lycaenid larvae and pupae employ complex chemical and acoustical signals to manipulate ants. Cost/benefit analyses have demonstrated multiple trade-offs involved in myrmecophily. Both demographic and phylogenetic evidence indicate that ant association has shaped the evolution of obligately associated groups. Parasitism typically arises from mutualism with ants, arid entomophagous species are disproportionately common in the Lycaenidae compared with other Lepidoptera. Obligate associations are more common in the Southern Hemisphere, in part because highly ant-associated lineages make up a larger proportion of the fauna in these, regions. Further research on phylogeny and natural history, particularly of the Neotropical fauna, will be necessary to understand the rote ant association has played in the evolution of the Lycaenidae.

2002_pierce_et_al.pdf
2001
Pierce NE. Peeling the onion: Symbioses between ants and blue butterflies. In: Model systems in behavioral ecology. Princeton: Princeton University Press ; 2001. pp. 41-56. 2001_pierce_peeling_the_onion.pdf
Fraser AM, Axen AH, Pierce NE. Assessing the quality of different ant species as partners of a myrmecophilous butterfly. Oecologia. 2001;129 :452-460.Abstract

We assessed the quality of different ant species as partners of the facultatively myrmecophilous lycaenid butterfly Glaucopsyche lygdamus. We compared disappearance and parasitism rates of G. lygdamus larvae in the field, and development of non-feeding pre-pupae in the laboratory, when individuals were untended or tended by one of four ant species. Formica podzolica was the only ant species to provide a clear benefit to G. lygdamus, in the form of reduced larval parasitism relative to untended larvae. F. 'neogagates' (F. neogagates + F. lasioides) and Tapinoma sessile were essentially neutral partners, providing no significant cost or benefit for any of the parameters measured. Relative to untended individuals, association with F. obscuripes significantly increased larval disappearance and significantly decreased pupal mass. Thus, F. obscuripes may act as a parasite of the general association between G. lygdamus and ants under certain conditions. Ant species also differed in their persistence as tenders of G. lygdamus larvae once an interaction was established. Over the lifetime of a larva, F. podzolica and F. obscuripes usually remained as the attendant ant species on plants over consecutive census dates, while F. 'neogagates' and T. sessile were frequently replaced, most commonly by F. obscuripes. It remains to be determined if disappearance and developmental outcomes reported here reflect true fitness costs (i.e. reduced survivorship and lower reproductive success) for G. lygdamus. The potential and limitations for specialization in association between G. lygdamus and high quality ant partners are discussed.

2001_fraser_et_al.pdf
1999
Kitching R, Sheermeyer E, Jones R, Pierce NE. The Biology of Australian Butterflies (Monographs on Australian Lepidoptera Vol. 6). Sydney: CSIRO Press; 1999 pp. 395. brabynew1999.pdf
1995
Pierce NE. Predatory and parasitic Lepidoptera: carnivores living on plants. Journal of the Lepidopterists' Society. 1995;49 :412-453.Abstract

Moths and butterflies whose larvae do not feed on plants represent a decided minority slice of lepidopteran diversity, yet offer insights into the ecology and evolution of feeding habits. This paper summarizes the life histories of the known predatory and parasitic lepidopteran taxa, focusing in detail on current researchin the butterfly family Lycaenidae, a group disprotionately rich in aphytophagous feeders and myrmecophilous habits.

1995_pierce.pdf
1987
Pierce NE. The evolution and biogeography of associations between lycaenid butterflies and ants. In: Oxford Surveys in Evolutionary Biology . Vol. IV. Oxford University Press ; 1987. pp. 89-116.Abstract

Many organisms make a living from seratching each other's backs. and many survive at the expense of othcrs. Once a complex interaction has arisen between two organisms. what elfect can such a relationship have on their subsequcnt cvolution·! This pllpcr will consider thc evolutionary conscquences of ussocintions UIllOlIg Iycllcnid buttcrflics, their host plants, unts. purusitoids. lind prcdators. Thc Lycacllidac llfC cspecially intcrc.'1ting from an ccologicul and evolutionary pcrspcctivc because they exhibit dramatic variety in their life histories. The larvae of many species associate with ants, and these relationships can be parasitic. commensal, or mutualistic. larvae cun be carnivorous or hcrbivorous: and some species interact with many species of ants, whereas others are species-specific. It is partly because of this complexity and diversity that the lycaenidae have not been studied as intensively as other buUerny families, and I will discuss at least three problems that have hampered our understanding of their ecology and evolution. In particular. more must be learned about the nature of the exocrine secretions of lycaenid larvae, and whether they function to reward. appease, and/or deceive their associated ants. The association between lycaenids and ants has had several important evolutionary consequences, and I will show how these relate to the question of why there are so many species of Iycaenid buuernies. Finally. I will discuss an unresolved pattern in the biogeography oflycaenid buuernies: association with ants in general, and species-specific interactions in particular, are far more common among Iycaenids found in Ethiopian, Oriental. and Australasian regions than among those from the Holarctic. 

1987_pierce.pdf