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Tropical pitcher plants (Nepenthes) 
act as ecological filters by 
altering properties of their fluid 
microenvironments
Kadeem J. Gilbert   1*, Leonora S. Bittleston1,2,3, Wenfei Tong4 & Naomi E. Pierce1

Characteristics of host species can alter how other, interacting species assemble into communities by 
acting as ecological filters. Pitchers of tropical pitcher plants (Nepenthes) host diverse communities of 
aquatic arthropods and microbes in nature. This plant genus exhibits considerable interspecific diversity 
in morphology and physiology; for example, different species can actively control the pH of their 
pitcher fluids and some species produce viscoelastic fluids. Our study investigated the extent to which 
Nepenthes species differentially regulate pitcher fluid traits under common garden conditions, and the 
effects that these trait differences had on their associated communities. Sixteen species of Nepenthes 
were reared together in the controlled environment of a glasshouse using commonly-sourced pH 6.5 
water. We analyzed their bacterial and eukaryotic communities using metabarcoding techniques, and 
found that different plant species differentially altered fluid pH, viscosity, and color, and these had 
strong effects on the community structure of their microbiota. Nepenthes species can therefore act as 
ecological filters, cultivating distinctive microbial communities despite similar external conditions, and 
blurring the conceptual line between biotic and abiotic filters.

Living organisms can act as ecological filters that alter the ability of other species to establish and persist in 
defined local environments. The term “ecological filter” has predominantly been used in plant community ecol-
ogy1; however, it can also be applied to any system in which some key ecological factor influences the assembly 
of the local community, regardless of which taxon comprises that community (e.g. plants2, insects3, vertebrates4, 
and microbes5). Also, the term’s use is not always strictly limited to biotic filtering agents (e.g. woody debris6, 
vertebrate carcasses7, and landscape heterogeneity8). Here, we apply the term ecological filter to the phytotelmata 
(plant-held waters) of tropical pitcher plants (Nepenthes L.: Nepenthaceae: Caryophyllales). These carnivorous 
plants have modified leaves known as ‘pitchers’ that contain a pool of plant secretions and rainwater used for 
the capture and digestion of arthropod prey9. Additionally, however, this digestive fluid serves as a habitat for a 
diverse community of symbiotic dipteran larvae, mites, bacteria, fungi, and protists10–13.

Many studies treat biotic and abiotic filters as conceptually separate, distinguishing between abiotic (often 
termed “environmental”) and biotic filters14,15. However, such a distinction may not always be a useful simplifi-
cation. Abiotic factors, such as pH or oxygen availability, do not only affect organisms; the reverse can also occur 
through “ecological niche construction”16,17. For example, during the Great Oxygenation Event cyanobacterial 
photosynthesis led to a large increase in oxygen levels in Earth’s atmosphere. The distinction between biotic and 
abiotic influence also becomes blurred in small, contained environments such as inside termite mounds, where 
the inhabitants’ metabolic products strongly impact the entire system18,19. Biotic-abiotic interactions can have an 
even larger impact when the contained environment is within a living organism; in this case, the host’s “extended 
phenotype”20 can directly influence the entire inhabitant community and define the bulk of the abiotic conditions 
experienced, especially if the host has evolved to regulate those conditions in specific ways.
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Because of this, the ecological filter concept is of considerable utility to the study of host-microbiome interac-
tions. A general concept of ecological filters that recognizes the integrated nature of abiotic and biotic factors can 
be useful in inquiring into the nature of microbial community assembly: to what extent can closely related host 
species produce characteristically distinguishable microbiota given identical external environmental conditions?

The genus Nepenthes contains over 140 described species and the pitchers of different species exhibit a high 
level of morphological diversity, varying widely in shape, size, and coloration21,22, which can correspond to diverse 
dietary specializations23–27. Physiological traits related to the abiotic conditions of pitcher fluid also can vary 
among species28. Interspecific trait differences in pitchers may mediate their interactions with symbionts and 
affect the resultant community composition of the microbiome. Multiple studies have shown that different plant 
species29,30 or even genotypes within species31 can have distinguishable microbiota when placed in a common 
environment. Due to the nature of the digestive fluid, however, pitcher pools could potentially exert stronger 
selective control over the microbiota contained within.

One possible means of selective control is via the biochemistry of the fluid. Pitchers secrete a variety of 
digestive enzymes including proteases, chitinases, glucanases, glucosidases, nucleases, esterases, peroxidases, 
phosphatases, and ureases32,33. The aspartic proteases nepenthesin I and nepenthesin II are characteristic of 
Nepenthes34,35. Additionally, pitchers secrete compounds with anti-bacterial36 and anti-fungal properties37 that 
could directly constrain which taxa can colonize and establish in these environments. A number of other fluid 
traits may also act as ecological filters. For instance, pitchers alter the viscosity of their fluid: some species produce 
highly viscoelastic fluid, well adapted to increase prey retention38–41. Viscosity can differentially affect bacterial 
taxa, as has been seen in animal gut environments42–44 and motor oil45; the effect of viscosity on flagellar motility46 
may well favor the growth of certain taxa and thus may have broad effects on a community level.

Pitchers can also actively regulate their pH levels, with likely species differences in this trait47. Individual spe-
cies of bacteria are typically constrained to specific pH ranges48 and given the strong effect of pH in structuring 
microbial communities in a wide variety of other contexts, including roots49–51, soils52, and guts53, it is highly 
likely pH can act as a filter for pitchers. Indeed, prior studies of Nepenthes microbiota indicate that pH can be a 
major factor in shaping communities54,55 and field studies also point to interspecific differences in fluid pH56,57.

The goal of the present study is to determine the extent to which Nepenthes species differentially regulate 
pitcher fluid traits given common rearing conditions, and the effect that such interspecific trait differences have on 
community assembly of the microbiota. This study takes advantage of the highly controlled environmental con-
ditions within a horticultural glasshouse. We used plants reared in a Nepenthes nursery at Singapore’s “HortPark”. 
This nursery contained a large collection of Nepenthes species with geographic origins across the distribution of 
the genus; plants were propagated in a common garden setting within a climate-controlled glasshouse.

An earlier study54 similarly utilized a common garden setup to explore ecological filtering in 7 local Nepenthes 
species found in Thailand. Our study is an advance over previous work in that more species (15) were studied in 
a more controlled experimental setting: plants kept fully indoors, reducing exposure to a large uncharacterized 
potential arthropod pool and variable external conditions. We filled pitchers with water from a common source 
and standardized pH in order to maximize the similarity of the starting conditions, thereby increasing confidence 
that any resulting differences in fluid properties and microbiome communities could be attributed to plant physi-
ological traits. Although artificial in nature, this study provides novel data on the Nepenthes microbiome that can 
be compared with results from previous analyses and improve our understanding of wild community assembly, 
as well as the potential power of trait-based ecological filtering.

We emphasize that it was not our intention to investigate the ecology of this particular set of Nepenthes spe-
cies and the composition of their symbiotic communities in their natural habitats. Rather, we were interested in 
determining the extent to which different host species are able to differentially filter a common microbial pool 
under common rearing conditions. Thus, we designed the experiment to reduce external environmental variation 
as much as possible. Another objective was to maximize the likelihood of observing possible species differences 
by selecting as wide an assortment of species as possible; meeting this goal led to limitations in within-species 
replication. We focused on broad variance in traits across samples and a large number of samples overall, and to 
this end, we analyzed 86 pitcher fluid samples from 15 species and one hybrid. We expected to see differences in 
the fluid pH and viscosity among Nepenthes species housed in a common environment, and hypothesized that 
these differences would alter associated microbial communities.

Materials and Methods
Rearing conditions.  The present study used plants cultivated for horticultural purposes in a dedicated 
Nepenthes glasshouse at the HortPark nursery in Singapore. The 15 species (and one hybrid) of Nepenthes were 
originally imported to HortPark in 2014 as micropropagated clones from Borneo Exotics (Pvt) Ltd., a nursery 
located in Sri Lanka. The plants were grown together in the HortPark glasshouse under common conditions 
and thus were all roughly the same age at the time that their pitchers were sampled. The plants were potted in 
Sphagnum medium and foliar-fed using Gaviota 63 fertilizer. The glasshouse environment was regulated to mimic 
conditions representative of the natural habitat of high-altitude Nepenthes species: the temperature was kept at 
16 °C and the humidity at 80% relative humidity, maintained via an automatic misting system. The sealed indoor 
environment largely precluded entry by arthropods; however, fungus gnats (Sciaridae) could be found living in 
the Sphagnum medium. The water source used for misting and watering the plants was tap water that was filtered 
and mixed with enough hydrochloric acid to reach a target pH of 6.5. This pH-altered water was added to the 
pitchers ad libitum (“topping off ” any endogenous fluid produced by the plant and counteracting evaporation 
and spills) such that they remained one-third full of fluid, which is a fluid level typically seen in wild pitch-
ers. Maintaining relatively similar fluid levels in this way thus effectively reduced variation due to fluid volume 
(Table 1); we confirmed that volume lacked a significant effect on community composition for either bacteria 
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or eukaryotes (Mantel tests, bacteria: r = 0.006, p = 0.44; eukaryotes: r = −0.009, p = 0.55). Water addition was 
ceased for two weeks prior to sampling in order to allow time for pitchers to adjust fluid properties.

Sampling design.  Sampling took place in July 2016. We aimed to sample from species that were represented 
by 2-3 individual plants and where possible, we sampled from 2 or 3 pitchers per individual (see Table 1 for full 
list of sampled plant species with successful extractions). We chose healthy pitchers of comparable size and age 
(noted by nodal position on the plant); however, the exact ages and time of opening were not known. For individ-
ual plants with multiple pitcher samples, we noted the ages of the pitchers relative to each other. In natural con-
ditions, there may be successional changes in community composition with pitcher age58–60, however we tested 
the effect of relative pitcher age in our study and found that samples did not cluster by relative pitcher age (Mantel 
tests, bacteria: r = −0.05, p = 0.86; eukaryotes: r = 0.02, p = 0.31). The highly controlled nature of this experi-
mental setup likely reduced the impact of successional effects, especially considering the similar ages of all plants 
used and the constancy of the environment to which they were exposed. We collected the entire fluid contents 
into sterile Falcon tubes using sterile Pasteur pipettes, wearing gloves as a further safeguard against contamina-
tion. Fluid pH was measured by placing a small drop of remnant fluid from the pipette directly onto a Millipore 
ColorpHast (0–14) indicator strip. Indicator strips provide a resolution of 1 pH unit, which is somewhat coarse 
(e.g. a sample with a reading of pH 3 on a strip may actually fall somewhere between 3 and 4 if using a finer reso-
lution); nevertheless, this scale was suitable for our study as the range of pH values was wide (recall that pH is on a 
logarithmic scale). To preserve the DNA, we added 1 mL of Cetyl trimethylammonium bromide (CTAB) solution 
for every 1 mL of pitcher fluid10. The volume and color (e.g. clear or brightly yellow/green/pink-colored) of the 
fluid sample was also noted prior to addition of CTAB (Table 1, Fig. 1A). Fluid samples that had the property of 
forming unbroken strands between the pitcher and pipette tip during collection were considered to be viscoelastic 
(hereafter “viscous” for brevity)39. After DNA was extracted from the sample, solid particles (prey contents) were 
filtered out of the fluid using sterile gauze and the contents were examined under a dissecting microscope, identi-
fied, and counted. Prey counts were determined based on a combination of head capsules and wings.

Sequencing and data processing.  We used a metabarcoding approach to sequence the 16S and 18S rRNA 
genes in the fluid to represent the entire prokaryotic and eukaryotic communities in the pitcher fluid. DNA 
extractions were done as described previously55. First, to concentrate cells from preserved pitcher fluid we did an 
isopropanol precipitation, adding an equal volume of isopropanol to 1 mL (or less if the sample had lower volume) 
of preserved fluid and centrifuging at max speed for 10 minutes. The supernatant was discarded, and a buffer and 
phenol-chloroform were added before bead-beating at maximum speed for 2 minutes. We then extracted DNA 
from the liquid using a phenol-chloroflorm extraction method61. Negative controls were included for each set of 
extractions, and no measurable DNA was recovered from them. Amplicons were generated and sequenced at the 
Environmental Sample Preparation and Sequencing Facility (ESPSF) at Argonne National Laboratory. We tar-
geted the V4 region of the 16S rRNA gene using primers 515F-806R62,63 and the V9 region of the 18S genes using 
primers Euk1391f-EukBr64,65. Primers were adapted with constructs designed for the Illumina platform. For the 
PCRs, each 25 µl reaction contained 9.5 µL of MO BIO PCR Water (Certified DNA-Free), 12.5 µL of QuantaBio’s 

Name Region of Origin
Pitcher 
Morph

Total no. 
of plants

Mean no. pitchers sampled per 
plant ± standard deviation (sd)

Mean ± sd 
pH

Mean ± sd Fluid 
Volume (mL)

Mean ± sd Pitcher 
Length (mm)

Nepenthes boschiana Borneo L/I 2 3 ± 0 3.9 ± 1.2 5.93 ± 2.51 136.83 ± 9.67

Nepenthes copelandii Philippines L 2 2 ± 0 3.8 ± 1.5 7.6 ± 1.02 153.41 ± 33.08

Nepenthes dubia Sumatra U 3 1.67 ± 0.58 1.8 ± 0.8 0.48 ± 0.39 40.94 ± 3.94

Nepenthes eymae Sulawesi U + La 2 1.50 ± 0.71 3.7 ± 1.2 1.9 ± 0.26 78.93 ± 10.46

Nepenthes fusca Borneo I 3 2.33 ± 0.58 4.9 ± 0.4 1.98 ± 0.30 139.66 ± 12.79

Nepenthes hamata Sulawesi L 2 1 ± 0 3 ± 1.4 1.76 ± 2.45 86.66 ± 30.56

Nepenthes inermis Sumatra U 3 2 ± 0 2.2 ± 0.4 0.66 ± 0.27 58.48 ± 27.18

Nepenthes jacquelineae Sumatra L 4 1.25 ± 0.50 2 ± 1.0 1.57 ± 0.40 45.08 ± 25.86

Nepenthes khasiana India U 2 1.50 ± 0.71 3.3 ± 0.6 1.33 ± 1.04 102.93 ± 10.98

Nepenthes maxima Sulawesi & New Guinea Lb 4 1.75 ± 0.50 3 ± 0.8 4.29 ± 1.32 100.29 ± 32.99

Nepenthes ramispina Malayan Peninsula U 2 2 ± 0 2.3 ± 0.5 1.4 ± 0.47 109.71 ± 18.03

Nepenthes sanguinea Malayan Peninsula I 3 1.67 ± 0.58 2 ± 0.7 1.38 ± 0.16 107.44 ± 33.98

Nepenthes singalana Sumatra L/I 3 1.33 ± 0.58 2.3 ± 2.5 1.76 ± 0.28 110.86 ± 31.85

Nepenthes tentaculata Borneo & Sulawesi L 3 1.67 ± 0.58 4.2 ± 0.4 1.04 ± 0.62 41.01 ± 7.01

Nepenthes truncata Philippines U 4 1.25 ± 0.50 3 ± 1.4 1.78 ± 0.12 137.73 ± 21.31

N. × “Bill Bailey”  
(N. singalana × ventricosa)

Unnatural Hybrid, N. 
ventricosa = Philippines U 6 2 ± 0.63 2.3 ± 0.9 1.86 ± 2.05 117.99 ± 20.22

Table 1.  Summary of Nepenthes species sampled for this study. For pitcher morph, L = “lower pitchers”, 
U = “upper pitchers”, and I = “intermediate pitchers”, indicating the pitcher morph(s) representing that 
particular species in our dataset. aOne individual plant produced upper pitchers and the other produced lower 
pitchers in this case. bIn this case, all successfully extracted fluid samples were from lower pitchers, however a 
single upper pitcher of N. maxima was also collected.
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Figure 1.  Illustration of fluid properties and community composition of experimental pitchers. (A) Beanplot 
representing pH levels of each species. The width of short white lines represents the number of samples at each 
value; long black lines represent means. Letters above indicate significant differences: species sharing a letter 
do not have significantly different means from one another. Small barplots represent portion of pitchers per 
species that exhibited colored fluid. Circles represent portion of pitchers per species that produced viscous 
fluid. Fly icons represent individual pitcher samples that contained more than 50 visible gnats. Illustrations 
of pitchers from each species by LSB; illustrations are not to scale and are for representative purposes only. 
Species are organized by mean pH. Species codes: DUB = Nepenthes dubia, JAC = N. jacquelineae, SAN = N. 
sanguinea, INE = N. inermis, RAM = N. ramispina, SIN = N. singalana, VEN = N. × “Bill Bailey”, HAM = N. 
hamata, MAX = N. maxima, TRU = N. truncata, KHA = N. khasiana, EYM = N. eymae, COP = N. copelandii, 
BOS = N. boschiana, TEN = N. tentaculata, FUS = N. fusca (B) Stacked barplot representing relative abundances 
of bacterial taxa. Note that “Rhodospirillaceae” here is Rhodosprillaceae sensu lato and also includes 
Reyranellaceae. (C) Stacked barplot representing relative abundances of eukaryotic taxa.
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AccuStart II PCR ToughMix (2x concentration, 1x final), 1 µL Golay barcode tagged Forward Primer (5 µM con-
centration, 200 pM final), 1 µL Reverse Primer (5 µM concentration, 200 pM final), and 1 µL of template DNA. 
The PCR conditions were: 94 °C for 3 minutes to denature the DNA, 35 cycles at 94 °C for 45 s, 50 °C for 60 s, and 
72 °C for 90 s; and a final extension of 10 min at 72 °C. Amplicons were quantified using PicoGreen (Invitrogen) 
and the 16S and 18S sets were each separately pooled into single tubes in equimolar amounts. These pools were 
cleaned with AMPure XP Beads (Beckman Coulter) and quantified with a fluorometer (Qubit, Invitrogen). After 
quantification, the pools were diluted to 2 nM, denatured, and then diluted to final concentrations of 6.75 pM 
with a 10% PhiX spike. The 16S and 18S pools were sequenced on two separate Illumina MiSeq runs.

Sequences were assembled and assigned to operational taxonomic units (OTUs) using QIIME version 1.9 
on Harvard’s Odyssey computer cluster55. Briefly, we joined forward and reverse reads using fastq-join, then 
split libraries with a PHRED quality cut-off of 20 to remove low-quality sequences, and used UCLUST (version 
1.2.21q) open-reference clustering to form groups of sequences into OTUs with 97% similarity. We used the 
SILVA database version 132 and the UCLUST method for taxonomic classification of 16S and 18S OTUs. In some 
cases, further taxonomic assignment was determined using NCBI BLAST. Neighbor-joining phylogenies were 
constructed for all bacterial (16S) and eukaryotic (18S) OTUs. Samples were rarefied to 1328 (16S) and 1675 (18S) 
sequences for downstream community analyses. 16S OTUs classified as chloroplast and mitochondrial sequences, 
and 18S OTUs classified as Embryophyta (land plant) sequences were removed from downstream analyses of 
community composition to avoid inclusion of possible contaminants from host plant cells. Additionally, we 
repeated certain analyses for eukaryotes after removing all OTUs classified as fungus gnats (Insecta: Diptera: 
Sciaridae), in order to probe whether trends in community composition were sensitive to the high levels of prey 
DNA in some samples.

Statistical analyses.  All analyses were conducted in R version 3.5.0. In addition to testing for correlations 
between traits, we tested for phylogenetic signal in traits using previously published phylogenetic data21, the Pagel 
lambda66 and Blomberg et al. K67 statistic for continuous traits, and the Fritz and Purvis D68 statistic for qualita-
tive traits. We used the function ‘betadisper’, paired with ‘permutest’ to calculate the homogeneity of variance in 
community composition across species. Some samples were excluded in order to achieve homogeneity of variance 
for analysis of community composition. We excluded N. dubia and N. hamata from our analysis of community 
composition, each of which had only a single sample from one pitcher that was successfully extracted. For eukar-
yotes, N. jacquelineae also had only a single successful extraction and was also excluded from ordinations and 
downstream analyses. Lastly, we excluded the hybrid taxon N. × “Bill Bailey” (N. singalana × ventricosa) for both 
bacterial and eukaryotic community composition analyses, due to its violation of homogeneity of variance and 
in order to limit the comparison of community structure to well recognized species rather than commercially 
produced hybrids.

Since it was not possible to extract DNA successfully from all of the samples and some samples returned 
sequences only for either 16S or 18S, we also performed logistic regressions (generalized linear models, binomial 
family with “logit” link) to assess potential biases in PCR amplification success as a consequence of pitcher prop-
erties. We used the ‘glmer’ function in the ‘lme4’ package69 and included all examined factors (including prey 
count, fluid color, fluid viscosity, and pH) as fixed effects in a single model with PCR amplification success as the 
predictor (16S and 18S each examined separately), with individual plant as a random effect.

Using the ‘vegan’ package, we assessed community-level similarity using the non-metric multidimensional 
scaling (NMDS) ordination method and the unweighted Unifrac distance metric. We assessed the significance of 
clustering by pitcher traits (species, pH, fluid color, and viscoelasticity) using the ‘adonis’ function in the ‘vegan’ 
package70, which conducts a specialized PERMANOVA test. For quantitative traits such as pH, we also performed 
a Mantel test. We further conducted canonical correspondence analysis (CCA), a form of constrained ordination, 
in order to more directly test the correlation between community composition and pH. We calculated alpha 
diversity according to the Shannon Index using the function ‘diversity’ in the ‘vegan’ package.

In order to examine patterns of differential abundance of individual OTUs in relation to fluid properties, we 
performed ANCOM (Analysis of Composition of Microbiomes)71, a test designed to examine taxon abundance 
while accounting for the fact that metagenomics studies yield relative abundance data as opposed to absolute 
abundance; one advantage of this test is that it can reveal changes in differential abundance of rare OTUs that oth-
erwise do not affect community-level properties. For ANCOM tests, we used the full set of successfully extracted 
samples (including singleton species and the hybrid N. × “Bill Bailey”), only included OTUs with sequence 
counts above 100, and corrected for multiple testing (FDR) at a significance level of 0.05.

Ethics approval.  This article does not contain any studies with human participants or animals performed by 
any of the authors.

Results
Fluid properties and community composition.  The bacterial communities found in our samples consist 
of several phyla, predominantly Proteobacteria (Alpha-, Beta-, and Gammaproteobacteria) and Bacteroidetes. 
Within Alphaproteobacteria, the family Acetobacteraceae was particularly dominant in some samples (compris-
ing as much as 99.2% of sequences in a given sample, Fig. 1B). The eukaryotic communities found in our sam-
ples consist of a diverse assemblage of Metazoa, Fungi, Amoebozoa, Archaeplastida, Stramenopiles, Alveolata, 
Rhizaria, and Discoba (Fig. 1C).

The mean pH was significantly different across species (Kruskal-Wallis, χ2 = 42.98, p«0.001, Fig. 1A). Some 
species (N. dubia, N. jacquelineae, N. sanguinea, N. inermis, and N. ramispina) had a low mean pH (~2) and a 
narrow range (Table 1); N. singalana and N. × “Bill Bailey” also had a low mean pH, but with at least one high 
pH outlier each. Most of the remaining species had a more moderate mean pH (~3–4) and a very wide range of 
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values, while N. fusca had a relatively high mean pH (4.86) and narrow range (Table 1). N. fusca’s pH is signif-
icantly different from that of N. dubia, N. inermis, N. jacquelineae, N. ramispina, N. sanguinea, N. singalana, N. 
tentaculata, and N. × “Bill Bailey” (posthoc Dunn Test with Benjamini-Hochberg correction, p < 0.05 for all 
pairs, Fig. 1A). We found no phylogenetic signal in mean pH, minimum pH, maximum pH, or pH range (Pagel’s 
lambda and Blomberg’s K, p > 0.10 in all cases; Supplementary Figure) for the species tested.

The different species also varied in their ability to produce viscous fluids: N. sanguinea, N. ramispina, N. × 
“Bill Bailey”, N. eymae, N. tentaculata, and N. fusca did not display the ability to do so (Fig. 1A). A few species 
produce colored fluid in some pitchers, including N. singalana, N. × “Bill Bailey”, N. hamata, N. maxima, N. 
khasiana, N. eymae, N. copelandii, and N. boschiana (Fig. 1A). We observed colored fluid in some unopened or 
newly opened pitchers from different (unsampled) individuals in the HortPark glasshouse, including members 
of our study species (data not shown), thus suggesting that the fluid coloration is largely plant-produced rather 
than a function of external inputs from the environment. Colored fluids were either reddish/pinkish/orange or 
yellowish/greenish (interestingly, we observed that initially yellowish/greenish samples instantly turned reddish/
pinkish/orange upon the addition of CTAB, hinting at a common chemical nature of all colored fluid samples in 
our study).

The species did not differ significantly in prey capture (visible fungus gnat abundance, Kruskal-Wallis test, 
p > 0.05). Regarding correlations between traits, viscous pitcher samples tended to be more acidic (Kruskal-Wallis 
test, χ2 = 6.20, p = 0.012), and pitchers with visible prey tended to have a lower pH (Kruskal-Wallis test, χ2 = 5.03, 
p = 0.025). Colored fluid samples did not differ from clear fluid samples in pH or viscosity or prey capture 
(Kruskal-Wallis test, p > 0.05 in all cases); however, clear fluid had a disproportionately higher number of samples 
without visible prey (logistic regression, p = 0.003). We found no phylogenetic signal in presence of colored fluid 
(Fritz and Purvis’s D = −0.14, p = 0.08) or viscous fluid (Fritz and Purvis’s D = 0.74, p = 0.32; Supplementary 
Figure).

To assess potential biases in PCR amplification success, we tested for correlations between PCR amplifi-
cation success and different fluid properties; we found some moderately significant correlations (Table 2). A 
greater number of visible gnats increased the likelihood of PCR amplification success for 16S (logistic regres-
sion, p = 0.03); also, 16S PCR amplification success increased with increasing pH (logistic regression, p = 0.03). 
Viscous samples were more likely to fail for 18S (logistic regression, p = 0.04).

Influence of pitcher fluid traits on community composition and alpha diversity.  Nepenthes species.  
Both bacteria (PERMANOVA, R2 = 0.39, p < 0.001) and eukaryotes (PERMANOVA, R2 = 0.32, p = 0.004) show 
significant clustering by host species; however, a pairwise Adonis test shows no significant differences between 
individual species pairs (with Benjamini-Hochberg correction, p > 0.05 for all pairs; Fig. 2). In analyses of alpha 
diversity, bacterial communities differ in the mean and range of sample Shannon index by species; these means 
appear to be significantly different (Kruskal-Wallis test, χ2 = 29.637, p < 0.001), but individual species pairs are 
not significantly different under a Benjamini-Hochberg corrected post hoc Dunn test (p > 0.05 for all pairs). 
For eukaryotes, no significant differences exist in alpha diversity across species (Kruskal-Wallis test, χ2 = 18.38, 
p = 0.07). We found no differences in the resulting trends when we repeated these analyses with fungus gnat 
OTUs removed.

Fluid pH.  We found a significant relationship between community composition and pitcher fluid pH for both 
bacteria (Mantel test, r = 0.23, p < 0.001) and eukaryotes (Mantel test, r = 0.32, p < 0.001). The CCA test also 
revealed that community composition changed as a function of changing pH levels, highly significant for both 
bacteria (χ2 = 0.62, p < 0.001) and eukaryotes (χ2 = 0.62, p < 0.001). Alpha diversity increases with increasing pH 
for both bacteria (linear regression, R2 = 0.27, p ≪ 0.001) and eukaryotes (linear regression, R2 = 0.39, p ≪ 0.001). 
When we repeated these analyses for eukaryotes with fungus gnat OTUs removed, we found no differences in the 
resulting trends.

Fluid color.  Fluid color showed significant clustering for eukaryotes (PERMANOVA, R2 = 0.04, p = 0.03) 
but not bacteria (PERMANOVA, R2 = 0.025, p = 0.23). We repeated the analysis for eukaryotes with all OTUs 
assigned as fungus gnats removed, and in that case found no significant effect for eukaryotes (Adonis R2 = 0.0374, 
p = 0.07). Alpha diversity was not significantly different between colored and clear fluid samples for bacteria 
(Kruskal-Wallis test, χ2 = 0.56, p = 0.46). For eukaryotes, alpha diversity tended to be lower in colored fluid 

Factor

16S 18S

Estimate
Standard 
Error p-value Estimate

Standard 
Error p-value

Prey counts 0.341 0.1540 0.0269* 0.005 0.0122 0.6929

Fluid color 0.586 0.6882 0.3944 1.276 0.7373 0.0835

Viscosity −0.699 0.5820 0.2299 −1.219 0.5923 0.0395*

pH 0.527 0.2468 0.0328* 0.494 0.2588 0.0562

Table 2.  Results of logistic regressions performed on PCR amplification success (binary categorization of 
whether or not a sample successfully yielded detectable 16S/18S sequences) against prey counts (number of 
visible fungus gnats in pitcher), fluid color (clear or colored), viscosity (viscous vs. non-viscous), and pH level, 
within a generalized linear mixed model with plant as a random effect. N = 85 fluid samples. *Indicates p < 0.05.
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samples (Kruskal-Wallis test, χ2 = 6.13, p = 0.013); however, fluid color had no significant effect on alpha diver-
sity if fungus gnats are removed (Kruskal-Wallis test, χ2 = 3.10, p = 0.078).

Viscosity.  Fluid viscosity showed no significant clustering for either bacteria (PERMANOVA, R2 = 0.024, 
p = 0.26) or eukaryotes (PERMANOVA, R2 = 0.028, p = 0.22). Viscous samples had lower alpha diversity for both 
bacteria (Kruskal-Wallis test, χ2 = 4.43, p = 0.035) and eukaryotes (Kruskal-Wallis test, χ2 = 4.26, p = 0.039), 
though the effect was relatively weak. If fungus gnats are removed from the eukaryotic OTU table, viscosity had 
no effect on eukaryotic alpha diversity (Kruskal-Wallis test, χ2 = 2.88, p = 0.089).

Influence of pitcher fluid traits on individual OTUs.  Fluid pH.  According to the ANCOM test, 
the abundances of 25 bacterial and 17 eukaryotic OTUs were significantly differentially abundant across the 
different pH levels of the pitcher fluids. Bacteria exhibited variation in individual OTU response to pH level, 
with most OTUs increasing in abundance with increasing pH (all OTUs within Bacteroidetes, Cyanobacteria, 
and Verrucomicrobia), and others decreasing with increasing pH (Fig. 3). The minority of OTUs that 
decreased with increasing pH include Acidocella (Acetobacteriaceae) and Reyranella (Reyranellaceae, formerly 
Rhodospirillaceae72,73). An uncultured Acetobacteriaceae OTU exhibits the opposite pattern from its confa-
milial Acidocella. Most other OTUs in Alphaproteobacteria generally increased with increasing pH, except 
Sphingomonas, which generally decreased with increasing pH. In the class Betaproteobacteria (which a recent 
study proposes may be recircumscribed as an order within Gammaproteobacteria72), one OTU (Dechloromonas) 
decreased with increasing pH, while the other one (Pelomonas) increased with increasing pH. All signifi-
cant eukaryotic OTUs decreased with increasing pH, and all are assigned as fungus gnats (Diptera: Sciaridae: 
Bradysia).
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Figure 2.  Non-metric multidimentional scaling (NMDS) plots representing community similarity (UniFrac 
distances) of bacteria (A,C) and eukaryotes (B,D) by host plant species identity (A,B) and by pH (C,D). 
Each point represents a sample and distance between points represents degree of similarity in community 
composition. Lines in A and B connect points belonging to the same species. Grey contour lines in C and D are 
smooth surfaces calculated based on variation in pH using the ‘ordisurf ’ function in the ‘vegan’ package of R. 
Species codes: BOS = N. boschiana, COP = N. copelandii, EYM = N. eymae, FUS = N. fusca, INE = N. inermis, 
JAC = N. jacquelineae, KHA = N. khasiana, MAX = N. maxima, RAM = N. ramispina, SAN = N. sanguinea, 
SIN = N. singalana, TEN = N. tentaculata, TRU = N. truncata. pH levels: 1 = red, 2 = orange, 3 = yellow, 
4 = green, 5 = blue, 6 = purple.
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Fluid color.  The ANCOM test reveals 23 eukaryotic OTUs differentially abundant by fluid color: 5 OTUs in 
Fungi and 18 OTUs in Metazoa (Fig. 4). The metazoan OTUs were more abundant in colored fluid (most of which 
are absent from clear fluid); conversely, the fungal OTUs are more abundant in clear fluid (completely absent 
from colored fluid). The abundance of only a single bacterial OTU was significantly correlated with fluid color, an 
unassigned Enterobacteriaceae, which was more abundant in colored than clear fluid.
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Figure 3.  Results of analysis of composition of microbiomes (ANCOM) test, showing OTUs that are 
differentially abundant across pH levels. The points and dotted lines are smooth splines generated to summarize 
the individual trends in change of mean log relative abundance for each OTU across pH levels. Bars indicate 
standard deviation.
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Figure 4.  Results of analysis of composition of microbiomes (ANCOM) test, showing OTUs that are 
differentially abundant between the two categories of fluid color (clear and colored). The individual OTU 
taxonomic assignments are as follows: A-B: “Ascomycota: Pezizomycotina: Eurotiomycetes: Chaetothyriales: 
Capronia”, C: “Basidiomycota: Agaricomycotina: Tremellomycetes: Tremella”, D: “Basidiomycota: 
Agaricomycotina: Tremellomycetes: Syzygospora”, E: “Basidiomycota: Pucciniomycotina: Microbotryomycetes: 
Rhodosporidium”, F–W: “Arthropoda: Insecta: Diptera: Sciaridae: Bradysia”.

https://doi.org/10.1038/s41598-020-61193-x


9Scientific Reports |         (2020) 10:4431  | https://doi.org/10.1038/s41598-020-61193-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Viscosity.  The ANCOM test shows that the abundance of only a single bacterial OTU, an uncultured 
Lachnospiraceae (Firmicutes: Clostridiales), was significantly correlated with fluid viscosity, and it was more 
abundant in viscous fluid than non-viscous fluid. Only a single eukaryotic OTU had a significant ANCOM result 
by viscosity, Chlamydomonas (Archaeplastida: Chlorophyceae), and it was more abundant in viscous fluid than 
non-viscous fluid.

Discussion
We investigated how Nepenthes pitchers might act as ecological filters, especially via their manipulation of the 
abiotic properties of their fluid. In order for Nepenthes species to affect the ability of microbes to establish and 
persist in their pitchers, they must be able to alter their fluid properties. We demonstrated that the various species 
in our experiment do in fact alter their fluid properties, including pH modification and the production of viscous 
and/or colored fluid. The pitchers in our study were all filled with the same pH 6.5 water at the beginning of the 
experiment and yet after about two weeks of acclimation, they ended with a pH range spanning from ~1–6, and 
clear differences in fluid viscosity and color. We designate the differences in fluid properties as caused by both 
biotic (fluid viscosity, color) and abiotic factors (pH); however, the designation is not clear cut. The pH level, like 
viscosity or fluid color, is largely a function of pitcher physiology, and accordingly shows interspecific variation 
(Fig. 1A). This level of variation is striking: even with relatively low replication within species, it is clear that spe-
cies differ in their characteristic pH range, with some species being more stable than others. For example, out of 
12 pitchers of N. x “Bill Bailey”, 10 were pH 2 and out of 7 pitchers of N. fusca, 6 were pH 5 (Fig. 1A).

We first tested how Nepenthes species identity shapes variation in the community compositions of organisms 
housed within pitchers. At a first approximation, the magnitude of the effect of host species identity on commu-
nity composition is similar to that of pH; however, a post hoc test reveals that with the number of species involved, 
the differences between any species pair taken in isolation lacks statistical significance. To further probe the role 
of species identity as a force in shaping microbial assembly, we performed the ANCOM test for the presence of 
significantly differentially abundant OTUs within N. ramispina (a species with a visibly separated cluster in the 
ordination for bacteria, Fig. 2) versus all other species. While N. ramispina did contain OTUs that were unique 
or differentially abundant with respect to all other species pooled, these were OTUs that did not differ across the 
other species that share a similar pH mean and range (low and narrow, Fig. 1A). Hence these OTUs were likely 
associated with N. ramispina’s particular pH regulatory properties rather than N. ramispina itself. The fact that 
physiologically similar Nepenthes species do not contain characteristic and significantly different OTUs further 
suggests that trait variation rather than species identity per se is the factor that acts as an ecological filter in this 
study. This supports pH as the primary factor of importance among the traits we measured for community assem-
bly within Nepenthes pitchers.

The influence of pH on both bacteria and eukaryotes is strong, both in terms of community composition 
and in terms of the dynamics of individual OTUs (as seen in ANCOM results, Fig. 3). Most bacterial OTUs are 
less abundant in highly acidic fluid, and the overall alpha diversity is lower as well. This speaks to the harshness 
of low pH conditions, where only a few specialized acidophiles are able to thrive, such as the Acetobacteraceae. 
Interestingly, species in the Acetobacteraceae, especially of the genus Acidocella, appear to be common associates 
of Nepenthes, not only in this study, but in wild samples as well (Supplemental Discussion).

For eukaryotes, all OTUs with significant differential abundance at different pH levels were found to decrease 
with increasing pH. All of these OTUs were assigned as fungus gnats (Insecta: Diptera: Sciaridae) by BLAST. The 
high numbers of fungus gnat sequences at low pH levels may have multiple non-exclusive explanations: (1) prey 
capture has been recorded in other species to lower pH by inducing fluid acidification74,75; (2) pitchers belonging 
to high-acidity species may also be more successful at prey capture, assuming no bias in fungus gnat occurrence 
throughout the glasshouse; and/or (3) acidic pitchers may also be better at digestion, thus leaving less physical 
evidence of their prey capture success. In addition to these sources of intra-specific variability, pH differences are 
largely explained by species differences, as even with prey induction, it has been demonstrated that not all species 
are capable of achieving the same levels of acidity75. Also, the samples with the greatest number of visible gnats 
had relatively moderate to high pH (pH 4–6, Fig. 1). Future studies examining how prey abundances in pitchers 
correlate to 18S rRNA sequence counts could help to clarify this10. The effect of pH on eukaryotes is likely not 
limited to effects on prey DNA, though, as pH still has a significant effect on eukaryotic community composition 
after removing fungus gnats from the OTU table. Microbial eukaryotes living symbiotically in the fluid such as 
fungi, algae, and amoebae likely experience physiological challenges in acidic conditions similar to the bacteria, 
and/or appear to be similarly affected due to their interactions with the bacteria themselves. Future experimental 
work can distinguish direct effects of pH on microbial taxa, effects due to interactions between taxa, and effects 
due to prey.

It was surprising that viscosity, a biotic factor and definitively plant-regulated trait, had only a weak rela-
tionship to community structure, with no significant difference in community composition for either bacteria 
or eukaryotes between species with different fluid viscosities. The only effect we noted was that viscous pitch-
ers had lower alpha diversity for both bacteria and eukaryotes. This might suggest that viscous fluid presents 
a harsher environment for inquilines, similar to how low pH environments lead to reduced diversity. Notably, 
18S extractions from viscous samples were more likely to fail than those from non-viscous samples (Table 2). 
This was similar to lower 16S PCR amplification success for more acidic fluids (Table 2), mirroring the trend 
of decreasing bacterial alpha diversity with increasing acidity. However, without qPCR data directly measur-
ing numbers of ribosomal RNA genes, it is not possible to ascertain whether PCR amplification failure can be 
attributed to reduced microbial abundance or to some form of bias introduced by the extraction process. In any 
case, viscosity might have a larger impact on individual OTUs than on community composition, as our ANCOM 
results revealed OTUs with significant differential abundances between viscous and non-viscous fluids. However, 
it should be noted that we determined viscosity visually and recorded it as a binary trait39; quantitative rheological 
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measurements40 might have revealed continuous variation in viscoelasticity across samples, which may have had 
more explanatory power. As another caveat, levels of viscosity in this experiment possibly differ from natural 
conditions, as viscosity can be plastic76,77.

For eukaryotes, but not for bacteria, colorful pitcher fluids had significantly lower alpha diversity than clear 
fluids, suggesting fluid color to be a more important factor for eukaryotic communities. However, the effects of 
fluid color on eukaryotic community composition and alpha diversity are not robust, and disappear when fungus 
gnats are removed from the dataset. Like viscosity, fluid color appears to be more important at the individual 
OTU level than it is at the community level. Fluid color could be an indication of the production of droserone 
and 5-O methyl droserone. Past studies have shown that the presence of these compounds results in reddish37,78 
or yellowish78 fluid coloration. Droserone and 5-O methyl droserone are anti-fungal agents induced by prey 
capture, specifically in response to chitin37,78,79. This could explain the higher abundance of fungus gnat DNA in 
colored samples relative to clear fluid samples, accompanied by a decrease in the relative abundance of certain 
fungal OTUs (Fig. 4). Without confirmation by chemical analyses like Gas Chromatography-Mass Spectrometry 
(GCMS) this explanation remains somewhat speculative, but the pattern is suggestive. Pitcher fluid coloration 
is not a well-documented trait in the literature; to our knowledge, plant-produced colored fluid has only been 
reported for N. khasiana37,78,79. Our observation of colored fluid in several species is novel, and future work should 
investigate this this trait, both in the field and in cultivation, as it might impact fungal colonization and survival.

Interspecific differences in pH regulation may be linked to functional/ecological differences between spe-
cies. Future work should determine what ecological functions link the species that regulate their fluid pH levels 
in similar ways. In addition to interspecific trait variation, intraspecific variation is characteristic of Nepenthes. 
Most species produce two distinct pitcher morphs, “lower pitchers” from the terrestrial rosette phase and “upper 
pitchers” from the aerial climbing phase, occasionally with intermediate morphs produced during the transition 
between growth phases22. In some species the morphological and ecological differences between lower and upper 
morphs can be quite extreme, e.g. the insectivorous lower and coprophagous upper pitchers of N. lowii23. Thus, it 
may be valuable to examine between-morph fluid trait differences within species in future studies. Unfortunately, 
we were unable to adequately sample both morphs within species in order to meaningfully compare fluid traits 
between morphs; our species are generally represented by single morphs (Table 1).

In this study, it was not possible to assess the functional significance of differentially abundant microbial 
OTUs, but these could be probed by future transcriptomic or proteomic work. The observation of certain OTUs 
frequently occurring in Nepenthes pitchers in both natural and artificial situations could indicate that these par-
ticular associations are ecologically significant, so the common Nepenthes symbionts like Acidocella found here 
merit further research from a functional perspective. Pitchers may also modify other abiotic features of the fluid 
such as dissolved oxygen levels or temperature, so additional fluid properties should be examined in future work 
as well.

Our research supports the hypothesis that Nepenthes pitcher plants regulate abiotic factors, potentially as a 
means of maintaining species-specific microbial associations. This is important in considering the possibility of 
community codiversification80,81. From the perspective of the host, as long as an abiotic factor is under host con-
trol, it functionally becomes an extended phenotype with the same potential for evolution in response to inter-
species interactions82 as any other biotic phenotype. However, from the perspective of the microbial symbionts, 
evolution in response to host conditions becomes much less tight. Microbes that respond to a purely biotic factor, 
such as secondary metabolites, can be considered to be necessarily linked to the evolution of the host, as the exact 
biochemical compounds involved are unlikely to be found in other environmental contexts. On the other hand, 
when microbes respond to an abiotic factor, such as fluid pH, those microbes may have been pre-adapted to live 
in a wide range of environments that incidentally fit that factor, such as other small aquatic environments. So even 
if the abiotic factor is a product of host evolution in one context, the symbionts may not have evolved in response 
to the host. Thus, the evolutionary implications of biotic and abiotic filters can be quite different from the perspec-
tive of the symbiont, despite having similar implications from the perspective of the host.
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Archive (SRA) https://www.ncbi.nlm.nih.gov/bioproject/PRJNA605027.
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