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 Introduction

Caterpillars have a fantastic array of chemical, physical, and behavioral defenses to 
protect themselves against ants (Borges et al. 2014; Darling et al. 2001; DeVries 
1991a; Dyer 1995; Freitas 1999; Honda 1983; Peterson et al. 1987; Rostás 1657; 
Roux et al. 2011; Uemura et al. 2017). Larvae of diverse Lepidoptera are ignored by 
marauding ants foraging on their host plants, either due to chemical manipulation 
and camouflage (Akino et al. 2004; Eubanks et al. 1997; Portugal and Trigo 2005) 
or physical concealment (Bächtold and Alves-Silva 2013; Farquharson et al. 1922; 
Ito and Higashi 1991; Jones et al. 2002; Loeffler 1996; Sendoya and Oliveira 2017). 
Unharmed larvae of various butterfly and moth species are also occasionally known 
to live close to or within ant nests (Fiedler 1991; Kistner 1982; Lamborn et al. 1914, 
iNaturalist #65727498). Larvae that can survive encounters with ants and colonize 
ant territories, whether on host plants or inside structures built by ants, may enjoy a 
range of benefits including reduced competition, enemy-free space, and favorable 
microclimates (Atsatt 1981a; Hinton 1951; Koptur 1985; Saarinen and Daniels 
2006). Passive coexistence of larvae and ants, through physical/chemical protection 
or signaling by larvae, may be an important prerequisite to the appearance of stable 
ant associations in caterpillars (DeVries 1991b; Fiedler 1991) much as in other 
arthropod groups (Cushing 1997; Cushing 2012; Hölldobler and Wilson 1990; 
Parker 2016; Stadler and Dixon 2005; Vantaux et al. 2012). Particularly in tropical 
tree canopies, mosaics of competing ant colonies and ant species play a major role 
in diversifying available host plant niches, structuring caterpillar communities and 
creating specialized niches for those able to coexist with them (Agassiz and Kallies 
2018; Baker et al. 2016; Blüthgen and Stork 2007; Camarota et al. 2020; Dejean 
et  al. 2017; Floren et  al. 2002; Sendoya and Oliveira 2014; Seufert and Fiedler 
1996; Wiens et al. 1993).

In this chapter, we provide an overview of caterpillar-ant associations. A number 
of recent reviews focus on ant associations in Lycaenidae and Riodinidae, including 
Pierce et al. (2002) and Casacci et al. (2019b). Other treatments such as Kistner 
(1982), Hölldobler and Wilson (1990) and Pierce (1995) have reviewed the caterpil-
lars found in nests of social insects. However, ant associations have not been sum-
marized and critically examined across all Lepidoptera since Hinton (1951). Many 
novel relationships have been uncovered in the intervening 70 years, and we discuss 
factors that may contribute to the phylogenetic distribution and biogeography of 
these unusual life histories at the end of the chapter. We have not used comparative 
methods to analyze potential correlates of different forms of ant association, 
although we plan to do so in a subsequent publication that will include additional 
phylogenetic and quantitative life history measurements. Our goal here is to describe 
the full range of natural histories exhibited by these taxa and to identify questions 
that require further study.

Over 70% of species in the large butterfly family Lycaenidae appear to be ant- 
associated, making them the largest single group of lepidopteran myrmecophiles 
(Tables 1 and 2). Two additional radiations of ant associates make up 20% of 
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Table 1 Based on life history records and recent phylogenies, myrmecophily appears to have 
arisen at least 30 times across the Lepidoptera as a whole in at least 17 families (Espeland et al. 
2018; Kawahara et al. 2019; Léger et al. 2021; Mitter et al. 2017; Regier et al. 2015)

Family
Ant-associated 
group

Degree of 
association and 
type of 
relationship 
with ants

Number 
of 
ant- 
associated 
species Distribution References

Psychidae Iphierga, 
Ardiosteres (may 
constitute more 
than one distinct 
group of ant 
associates)

Obligate. Larvae 
feed on debris 
or ants in 
Iridomyrmex or 
other nests

3 species Australia Hinton (1951), 
Kistner (1982)

Tineidae Myrmecozelinae 
(in part may 
constitute more 
than one distinct 
group of ant 
associates)

Obligate. 
Myrmecozela 
ochraceella feed 
on Formica nest 
material and 
possibly also 
ants. Ippa are 
carnivorous and 
along with 
others occur 
with diverse ant 
groups

>8 species 
in >3 
genera

Europe to 
New 
Guinea

Ahn et al. 
(2014), Gray 
(1974), Hinton 
(1951), 
Hölldobler and 
Kwapich (in 
review), Kistner 
(1982), 
Parmentier 
et al. (2014)

Setomorpha 
melichrosta

Obligate (?). 
Larvae feed on 
plant materials 
in fungus 
gardens of Atta 
and Acromyrmex 
leaf-cutter ants

1 species New World 
tropics/
subtropics

Kistner (1982), 
Robinson and 
Nielsen (1993)

Amydria anceps Obligate. Feed 
on fungal 
substrate 
accumulations 
outside of Atta 
nests

1 species Mexico Sanchez-Pena 
et al. (2003)

Tortricidae Hystrichophora 
spp.

Obligate (?). 
Larvae feed 
within Vachellia 
ant-plant 
domatia

3 species East Africa Agassiz (2011), 
Baker et al. 
(2016)

Semutophila 
saccharopa

Facultative (?). 
Trophobiotic 
relationship

1 species Malaysian 
peninsula

Maschwitz 
et al. (1986)

(continued)
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Table 1 (continued)

Family
Ant-associated 
group

Degree of 
association and 
type of 
relationship 
with ants

Number 
of 
ant- 
associated 
species Distribution References

Sesiidae Osmanthedon 
domaticola

Facultative (?). 
Larvae feed on 
Vachellia 
ant-plant 
domatia within 
silk shelters

1 species East Africa Agassiz and 
Kallies (2018)

Cyclotornidae Cyclotorna spp. Obligate. 
Ant-attended 
and parasitic 
within ant nests

12 species Australia Dodd (1902), 
Dodd (1912), 
Pierce (1995)

Coleophoridae Batrachedra 
myrmecophila

Obligate. Preys 
on ant brood

1 species Java Hinton (1951), 
Pierce (1995)

Oecophoridae Stathmopoda sp. Obligate (?). 
Known from 
Oecophylla 
nests

1 species Australia Downes and 
Edwards (2016)

Pyralidae Pachypodistes 
goeldii

Obligate. Larvae 
feed on 
Dolichoderus 
ant nest cartons

1 species Brazil Hinton (1951), 
Pierce (1995)

Stenachroia 
myrmecophila

Obligate. Larvae 
may feed on 
Crematogaster 
brood

1 species Australia Hinton (1951), 
Pierce (1995)

Gen. sp. Obligate (?). 
Found in 
Dinomyrmex 
nest

1 species Borneo Orr et al. (1996)

Gen. sp. Obligate (?). 
Found in 
Oecophylla nest

1 species Cameroon Dejean et al. 
(2017)

Gen. sp. Facultative (?). 
Found only on 
plants with 
Crematogaster

1 species Cameroon Dejean et al. 
(2017)

Gen. sp. Facultative (?). 
Found only on 
plants with 
Oecophylla

1 species Cameroon Dejean et al. 
(2017)

Crambidae Niphopyralis and 
allies

Obligate. Feed 
on Oecophylla 
eggs and brood

4 species Australia, 
Java, and 
Cameroon

Dejean et al. 
(2017), Hinton 
(1951), Pierce 
(1995)

(continued)
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Table 1 (continued)

Family
Ant-associated 
group

Degree of 
association and 
type of 
relationship 
with ants

Number 
of 
ant- 
associated 
species Distribution References

Noctuidae Dyops spp. Facultative. 
Larvae feed on 
Cecropia 
ant-plants 
defended by 
Azteca ants

>10 
species

Central and 
South 
America

Janzen and 
Hallwachs 
(2021, Ramos 
et al. 2018)

Erebidae Coxina spp. Facultative (?). 
Larvae feed on 
Acacia 
ant-plants

1 species Central 
America

Janzen (1967), 
Janzen and 
Hallwachs 
(2021)

Eublemma 
albifascia

Obligate (?). 
Larvae feed on 
Oecophylla 
regurgitations

1 species Cameroon Dejean et al. 
(2016, (2017)

Homodes spp. Obligate (?). 
Larvae feed on 
foliage around 
Oecophylla ants

>6 species Tropical 
Asia and 
Australia

Entomological 
Network of 
Singapore 
(2017), Fiedler 
(1991), 
Holloway 
(2005), Leong 
and D’Rozario 
(2012), and 
additional 
references in 
text

Nudina artaxidia Obligate (?). 
Larvae feed 
from ant- 
attended scale 
insects

1 species Japan Komatsu and 
Itino (2014)

Notodontidae Rosema dentifera Facultative (?). 
Larvae feed 
only on Acacia 
ant-plants

1 species Central 
America

Janzen (1967), 
Janzen and 
Hallwachs 
(2021)

Gen. sp. (near 
Stauropus)

Obligate (?). 
May solicit 
trophallaxis 
from 
Oecophylla

1 species Cameroon Dejean et al. 
(2017)

(continued)
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Table 1 (continued)

Family
Ant-associated 
group

Degree of 
association and 
type of 
relationship 
with ants

Number 
of 
ant- 
associated 
species Distribution References

Saturniidae Syssphinx 
mexicana

Facultative (?). 
Larvae feed 
only on Acacia 
ant-plants

1 species Central 
America

Janzen (1967), 
Janzen (1984), 
Janzen and 
Hallwachs 
(2021)

Hesperiidae Lotongus 
calathus

Obligate (?). 
Larvae build 
nests always 
shared with ants

1 species Malaysia Igarashi and 
Fukuda (1997)

Pieridae Catopsilia spp. Facultative. 
Larvae regularly 
attract ants to 
excretions and 
leaf exudates

>3 species Africa and 
tropical 
Asia

Williams 
(1995-2020) 
and additional 
references in 
text

Lycaenidae Lycaenidae See Table 2. 
Most form 
trophobiotic 
relationships 
with ants

>3830 
species 
estimated

Widespread 
globally

See Table 2

Riodinidae Eurybiina 
(Riodininae: 
Eurybiini)

See Table 2. All 
appear to form 
trophobiotic 
relationships 
with ants

>35 
species 
estimated

Central and 
South 
America

See Table 2

Nymphiidini 
(Riodininae)

See Table 2. 
Most form 
trophobiotic 
relationships 
with ants

> 273 
species 
estimated

Central and 
South 
America

See Table 2

In the absence of detailed phylogenies, we base this estimate on the assumption that a myrme-
cophilous species observed in a clade of taxa whose larvae are not otherwise known to be ant- 
associated is likely to have independently evolved ant association, and for those families that show 
multiple cases of myrmecophily, each also appears embedded in a lineage with other species 
whose caterpillars are not ant-associated. Ant associations in which trophobiotic caterpillars con-
sistently provide ants with food rewards are not as common and to date have only been well- 
documented in Tortricidae, Cyclotornidae, Pieridae, Lycaenidae, and twice in Riodinidae. 
Additional small radiations of caterpillars that appear obligately ant-associated are known from 
Psychidae; at least three groups of Tineidae, Tortricidae, Coleophoridae, Oecophoridae, Crambidae; 
at least four groups of Pyralidae; and three groups of Erebidae, Notodontidae, and Hesperiidae. 
Caterpillars specializing on ant-plants are often poorly described but include numerous additional 
ant-associated taxa as discussed in the text. Please refer to the text for explanation regarding crite-
ria for inclusion as a myrmecophilous species

N. E. Pierce and E. Dankowicz
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species in the closely related butterfly family Riodinidae (Table 2). While caterpil-
lars in these two families are generally characterized as ant mutualists, we discuss 
evidence suggesting that interactions with negative consequences for ants are far 
more common than previously recognized, and that despite appearances, these asso-
ciations might be better characterized as parasitic on the part of the lycaenids or, at 
best, reciprocally parasitic by both parties. Most other ant-associated groups, like 
the Australian moth family Cyclotornidae, are individually species-poor and rarely 
encountered but collectively span almost the entire lepidopteran tree of life and 
display great diversity, particularly in the tropics (Table 1). We show that myrme-
cophilous caterpillars that passively coexist with ants are far more diverse than pre-
viously recognized and suggest that many such caterpillar groups remain 
undiscovered.

 Terminology and Overview

Myrmecophiles are “ant loving” organisms with adaptations that enable them to 
benefit from ant association, and we will refer to them interchangeably as ant asso-
ciates (narrower definitions are also sometimes used: (Hölldobler and Wilson 1990; 
Kronauer and Pierce 2011; Nichols 1989). Specializations that help these species 
find or attract and subsequently stay in contact with ants are important and could be 
considered part of a basic signature of myrmecophily. Ants themselves, their phero-
mones, and even volatiles released by other organisms disturbed by ants are used as 
cues by adults or larvae to find ants, as discussed below. Within Lepidoptera, we 
consider caterpillars ant-associated if we can directly observe or infer from avail-
able evidence that caterpillars or ovipositing females use these cues to locate ants or 
that caterpillars themselves produce secretions or vibratory signals specialized to 
attract ants. Caterpillars may also qualify as ant-associated if they appear special-
ized to live in close proximity to ants on myrmecophytes, plants with a strong mutu-
alistic relationship with ants and that typically provide ants with cavities for shelter.

Obligate ant associates are species that cannot complete their life cycle without 
ants. In cases where full life histories have been well documented, these species are 
easily identified. However, for cases where relationships must be inferred, a species 
is likely to be an obligate ant associate if the caterpillars are never found without 
ants nearby; if caterpillars rely on ants as a food source; if females hesitate or refuse 
to oviposit, even in captivity, without ants present; or if adults are typically only 
observed near the openings of ant nests. In contrast, facultative ant associates are 
sometimes found without ants. Facultative association of caterpillars with ants has 
only been well documented in Lycaenidae and Riodinidae, although it seems likely 
to occur in other groups that have not been so well characterized. Obligate ant asso-
ciates usually associate with ants from only one genus or species, while most facul-
tative myrmecophiles associate with multiple ant genera and subfamilies. A number 
of exceptions exist to these broad generalizations (Eastwood and Fraser 1999; 
Fiedler 2001; Glasier et  al. 2018). For example, the obligately ant-associated 
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Australian lycaenid, Jalmenus eichhorni, is attended by ants from different genera 
during the day and night (Dunn 2007). Larvae of a congener, J. evagoras, are typi-
cally associated with only a few ant species in the genus Iridomyrmex but during 
“breakout” periods of high abundance can readily be found associating with other 
genera (Pierce and Nash 1999).

Like other conditional interactions with ants, caterpillar-ant associations vary 
spatially and temporally, ranging from mutualisms, where both parties derive net 
fitness benefits from their interaction, through to parasitisms, where one party (in 
this case usually the ants) pays a fitness cost due to the association. Many appear to 
be commensal or only mildly parasitic in the sense that caterpillars benefit while ant 
fitness seems largely unaffected.

Many insects produce secretions that serve as a food source to attract and main-
tain a standing guard of ants and are described as being trophobiotic. We refer to 
lycaenid and riodinid caterpillars that do this as ant-attended. We use the term 
non- trophobiotic to describe caterpillars that are not actively ant-attended. The 
term “myrmecoxenous” has been used as a substitute for “non-trophobiotic” in 
recent literature but confusingly describes either a symphile, an insect that is a guest 
in ant nests (Nichols 1989), or a non-myrmecophile, an insect that is simply not ant- 
associated (Kitching and Luke 1985; Paul 1977), so we have avoided using it here.

Parasites found in ant nests often belong to groups that prey on ant-attended 
hemipterans and thus already possess appropriate defensive and feeding-related 
adaptations to coexist with ants (Eisner et al. 1972; Malicky 1970; Pierce 1995). 
These include numerous genera within the subfamily Miletinae [Lycaenidae], 
Shirozua [Lycaenidae], a few riodinids, Eublemma [Erebidae], Cyclotornidae, and 
perhaps Stathmopoda [Tineidae] and Baratrachedra [Coleophoridae]. This pattern 
is not confined to Lepidoptera: ant brood and trophallaxis feeding have been 
reported in species from nearly every prominent hemipteran-associated arthropod 
group, including ladybug beetles (Orivel et al. 2004; Vantaux et al. 2010), flower 
flies (Hölldobler and Wilson 1990), green lacewings (Tauber and Winterton 2014; 
Tauber et al. 2020), and even certain aphids themselves (Salazar et al. 2015).

Many butterfly and moth larvae have ant associations that have been potentially 
overlooked because the relationship is defined largely by its absence: these are cases 
where ants cannot detect or appear indifferent to the caterpillars. These caterpillars 
typically only associate with ants near nests and food sources—habitats that are 
hotspots for lepidopteran ant associates more generally. For example, a veritable 
menagerie of potentially ant-associated Lepidoptera lives on the African ant-acacia 
Vachellia drepanolobium, the dominant tree species in the “black cotton” vertisols 
of East African savannas. Eighteen species of Lycaenidae, some attended by ants, 
were documented on these ant-plants at field sites in Kenya and Tanzania over a 
5-year period (Fig. 1) (Baker et al. 2016; Martins et al. 2013; Whitaker et al. 2019). 
Numerous species of Tineidae, Tortricidae, Sesiidae, Blastobasidae, Gelechiidae, 
and Geometridae have been reared from the swollen thorn ant domatia of V. drepa-
nolobium, and many others feed in the tree canopy (Adamski 2017; Agassiz 2011; 
Agassiz and Bidzilya 2016; Agassiz and Harper 2009; Agassiz and Kallies 2018; 
Baker et al. 2016; Hocking 1970). Some of these species are polyphagous and have 
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Fig. 1 Lycaenid larvae, 
almost certainly Kipepeo 
kedonga (formerly known 
as Chilades kedonga 
(Parmentier et al. 2014)) 
that were abundant in 
swollen thorns of Vachellia 
drepanolobium in Suyian, 
Kenya. (Photo by Dino 
Martins)

Fig. 2 The brown silk 
envelope on the left was 
built by a tortricid 
caterpillar feeding inside a 
thorn domatium of 
Vachellia drepanolobium 
occupied by Crematogaster 
mimosae in Kitengela, 
Kenya. (Photo by Naomi 
Pierce)

been described as having greater abundance in the absence of ants (Agassiz 2011), 
and we would not describe these ones as being ant-associated. The majority are not 
sufficiently well known to be able to characterize them as ant-associated or not.

A few specialist myrmecophiles have nonetheless been documented on ant- 
plants. For example, larvae of Hystrichophora (Tortricidae) build strong, membra-
nous, dome-like shelters within hollowed-out V. drepanolobium domatia that are 
frequently shared with ants (Fig. 2) (Agassiz 2011). Caterpillars of H. griseana are 
common on trees inhabited by colonies of Crematogaster mimosae or C. nigriceps, 
but they are almost never found on trees inhabited by colonies of Tetraponera pen-
zigi (Baker et al. 2016). Similarly, caterpillars of Syssphinx mexicana (Saturniidae), 
Rosema dentifera (Notodontidae), and Coxina spp. (Erebidae) specialize on Central 
American acacias, Vachellia cornigera, and its relatives, which are inhabited by 
aggressive Pseudomyrmex ants, whose defenses the caterpillars are able to over-
come (Janzen 1967; Janzen 1984; Janzen and Hallwachs 2021). The larvae of Dyops 
spp. (Noctuidae) are essentially immune to ant attack and feed on various species of 
Urticaceae, including Cecropia ant-plants defended by Azteca ants (Janzen and 
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Hallwachs 2021; Ramos et al. 2018). Many other species reported from ant-plants 
may prove to be ant-associated upon further investigation. Tunnels and silk shelters 
built by Stenoma charitarca (Oecophoridae), and leaf rolls built by Acrospila gas-
tralis (Crambidae), allow caterpillars to persist on Maieta guianensis plants occu-
pied by Pheidole ants (Vasconcelos 1991), much as certain crambid larvae are 
protected from ants within leaf rolls on Tococa ant-plants (Michelangeli 2003). The 
database of macrocaterpillar food plants of the Area de Conservacion Guanacaste, 
Costa Rica (Janzen and Hallwachs 2021), does not indicate whether caterpillar host 
plants were actually occupied by ants but nonetheless includes dozens of butterfly 
and moth species that have been exclusively reared from ant-plant species, such as 
Lygropia cernalis (Crambidae) from Triplaris melaenodendron, Conchylodes nol-
ckenialis (Crambidae) and Munona robpuschendorfi (Erebidae) from Cordia allio-
dora, and Macalla sp. (Pyralidae) from Cecropia obtusifolia. Many Lycaenidae and 
Riodinidae also prominently infiltrate ant-plants (e.g., DeVries and Baker 1989; 
Eastwood and Fraser 1999; Heredia and Robbins 2016; Heredia and Robbins 2016; 
Kaminski 2008b; Kaminski et al. 2010a; Kaminski et al. 2012b; Kaminski et al. 
2020a; Maschwitz et al. 1984; Sands 1986; Shimizu-Kaya et al. 2015).

Many caterpillar species that do not directly interact with ants are polyphagous 
and occur on different host plants only as they become occupied by ants. For exam-
ple, the obligate ant associations of many species in the butterfly tribe Liptenini 
(Lycaenidae) only became evident based on the observation that the large, attractive 
adults had only been observed around arboreal Crematogaster nests (see discussion 
below). Similarly, Homodes (Erebidae) are large and unusual caterpillars that occur 
on a wide variety of host plants but generally only when the plants are also patrolled 
by Oecophylla ants (see discussion below) (Fiedler 1991; Holloway 2005; Leong 
and D’Rozario 2012; Lokkers 1990). This kind of “cryptic” association probably 
exists even in less charismatic lepidopterans, such as leaf mining micromoths (com-
pare Bily et al. (2008)).

Dejean et al. (2017) undertook the most extensive study to date of the extent of 
ant-caterpillar associations in tropical habitats. Defoliator and nectarivorous cater-
pillars were collected and reared from 50 to 100  m transects of the extrafloral 
nectary- bearing plant Alchornea cordifolia along forest edges in Cameroon, each 
transect exclusively dominated by one of five species of aggressive ants. Each of the 
tree-nesting species Crematogaster striatula, Oecophylla longinoda, Tetramorium 
aculeatum, and Camponotus brutus were represented by 30 transects, along with 10 
transects dominated by the ground-nesting species Myrmicaria opaciventris. Of the 
22 species of caterpillar found, only 1 was found with more than 1 ant species, 
although many were collected from numerous transects. All species showed distinct 
specializations to coexist with ants, including some parasites that could solicit 
trophallaxis or appeared to feed within ant nests. This study may be the first to sys-
tematically document the full spectrum of defoliator and nectarivorous caterpillars 
on a host plant dominated by specific ant species and shows that previously unknown 
ant associations across diverse lepidopteran families can be uncovered by careful 
observations in tropical habitats.
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 Synopsis of Caterpillar-Ant Associations

 Tineidae and Psychidae

Diverse species of Tineidae and Psychidae are known to scavenge exclusively 
within ant nests, encased with debris or protected by silk webbing, and some of 
these probably feed on ant brood or food resources. Pending genus-level phyloge-
nies that may reveal additional origins, ant associations appear to have originated 
independently in at least three tineid clades, represented respectively by the genera 
Myrmecozela, Setomorpha, and Amydria, as well as in the psychid genera Iphierga 
and Ardiosteres; see Regier et al. (2015) for a higher level molecular phylogeny of 
62 representatives of the main lineages within Tineoidea) (Ahn et al. 2014; Gray 
1974; Hinton 1951; Kistner 1982; Parmentier et al. 2014; Robinson and Nielsen 
1993; Sanchez-Pena et al. 1993). Caterpillars in the Palearctic and Oriental genus 
Ippa (Tineidae) have been found in ant nests of Crematogaster (Myrmicinae), 
Polyrhachis, Lasius, Dolichoderus, and Anoplolepis (Formicinae) (Hinton 1951; 
Hölldobler and Kwapich in review). Ippa caterpillars build a flattened protective 
case, and while I. dolichoderella larvae in Java are only known to consume brood, 
I. conspersa larvae in Japan also feed on adult ants (Hinton 1951; Hölldobler and 
Kwapich in review). Although not obligately ant-associated, the free-living larvae 
of Perisceptis carnivora (Psychidae) in Panama build portable defensive cases and 
frequently feed on worker ants (Davis et al. 2008).

 Tortricidae

Malaysian caterpillars of Semutophila saccharopa (Tortricidae) live in silk shelters 
constructed on bamboo and associate with ants from at least seven genera in a man-
ner similar to aphids. Ants feed on the sugar-rich anal droplets provided by the cat-
erpillars. The caterpillars prefer to excrete waste in the presence of ants, but the 
droplets can be withdrawn back into the anus and jettisoned several centimeters 
away from the larval shelter if ants remain unavailable (Maschwitz et al. 1986).

 Cyclotornidae

In the Australian family Cyclotornidae, which comprises the single genus 
Cyclotorna, larvae start out as external parasites of ant-attended leafhoppers or 
scale insects (Fig.  3) (Dodd 1902, 1912; Pierce 1995). Second-instar larvae of 
Cyclotorna monocentra are flattened and produce an anal secretion that attracts 
ants. Workers of Iridomyrmex purpureus carry them into the nest, where they feed 
on brood until leaving to pupate under bark (Epstein et al. 1999; Pierce 1995). The 
Cyclotorna larvae will die if their anal secretions are not removed by ants (Hinton 
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Fig. 3 This was one of 
several Cyclotorna 
(Cyclotornidae) larvae 
found in a Camponotus 
nest in Western Australia. 
(Photo by Jean Hort)

1951). Epipyropidae, the apparent sister group to Cyclotornidae (Hall et al. 2004; 
Heikkila et al. 2015), are ectoparasites of planthoppers and cicadas (Hemiptera) but 
are not known to interact with ants (Pierce 1995).

 Coleophoridae and Oecophoridae

Many Batrachedra (Coleophoridae) prey on scale insects, but larvae of the 
Indonesian species B. myrmecophila feed on ant brood in nests of Polyrhachis dives, 
protected from ants by portable cases (Hinton 1951; Pierce 1995). While several 
Stathmopoda spp. (Oecophoridae) feed on scale insects (Pierce 1995), one 
Australian species builds webs in Oecophylla nests where it may feed on ants 
(Downes and Edwards 2016).

 Pyralidae

Many Pyralidae are associated with ants. Larvae of the Brazilian Pachypodistes 
goeldii (Chrysauginae) chew Dolichoderus gibbosoanalis nest cartons, which they 
use to construct a protective case, and may also feed on the brood (Hinton 1951; 
Pierce 1995). Adults of this species are covered in long, loose setae that are likely to 
help freshly eclosed adults escape attack by ants (Kistner 1982). An Australian spe-
cies, Stenachroia myrmecophila (Galleriinae), may feed on Crematogaster brood 
(Hinton 1951; Pierce 1995). Larvae of other unidentified pyralids have been found 
in Dinomyrmex nest debris in Borneo (Orr et al. 1996) and in Oecophylla nests in 
Cameroon (Dejean et al. 2017). Caterpillar silk weaving may also help herbivorous 
Pyralidae coexist with ants. Dejean et al. (2017) found an unidentified species of 
pyralid that uses silk to cordon off young leaves of Alchornea cordifolia inhabited 
by Crematogaster striatula. Caterpillars of another unidentified pyralid species 
were found only on A. cordifolia occupied by Oecophylla longinoda, in communal 
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caterpillar nests resembling Oecophylla nests from which they emerge at night to 
feed when the ants are less active. Crematogaster ants were recently found nesting 
within a shelter built by larvae of Triphassa (Pyralinae) on an Erica imbricata heath 
in South Africa [iNaturalist #23039584]. More work will be needed to determine if 
this remarkable relationship is coincidental or occurs regularly.

Other than Lycaenidae and Riodinidae, species of Tineidae and Pyralidae are the 
most prominent caterpillar guests in ant nests (Table 1). These species are herbi-
vores, detritivores, and parasites and include the only caterpillars found in colonies 
of ants, such as leaf-cutter ants [Attini], that do not harvest nectar from plants and 
hemipterans (Kistner 1982; Robinson and Nielsen 1993; Sanchez-Pena et al. 2003). 
Other species of Tineidae and Pyralidae feed within social wasp, bee, termite, and 
even communal spider nests (Ahn et al. 2014; Brandl et al. 1996; Davis and Davis 
2007; Deyrup et  al. 2004; Kistner 1982; Pierce 1995). Most Lepidoptera found 
within human dwellings also belong to these two families (Bertone et  al. 2016; 
Linsley 1944). Flexible diets, along with defenses that help larvae avoid aggression, 
may be among the factors that help these families to thrive alongside diverse host 
ant associates, and more species will undoubtedly be found in association with ants 
as new life histories are uncovered.

 Crambidae

In the family Crambidae, at least two lineages in the largely phytophagous subfam-
ily Spilomelinae may be associated with ants. Cirrhochrista saltusalis (Spilomelinae: 
Margaroniini) caterpillars have been found alongside Pheidole ants and Oboronia 
punctatus caterpillars (Lycaenidae) within debris nests constructed by the ants on 
flowerheads, but this cohabitation may be an unusual occurrence (Lamborn 1911; 
Lamborn et al. 1914). Immature stages remain unknown from most Wurthiini, but 
several feed on brood of arboreal ants, in addition to a single phytophagous species 
(Mally et  al. 2019). Niphopyralis aurivillii (Spilomelinae: Wurthiini), a possibly 
chemical mimic of host ants known from Java, feeds on the brood of Polyrhachis 
bicolor and may help maintain the silken nest structure (Hinton 1951; Pierce 1995). 
Another species found in Java, N. myrmecophila, feeds on Oecophylla smaragdina 
brood and has a flattened portable case for protection (Hinton 1951). Niphopyralis 
chionesis is suspected to prey on brood of Oecophylla smaragdina in Australia 
(Pierce 1995), and Dejean et al. ( 2017) found a related larva feeding on Oecophylla 
longinoda eggs in Cameroon (Fig. 4).

 Erebidae

Larvae of lichen moths (Erebidae: Lithosiini) secrete toxins that protect them from 
ants (Chialvo et al. 2018; Palting 2020). Ayre (1958) observed hundreds of British 
Columbian Crambidia casta larvae that sheltered and pupated in Formica nests, 
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Fig. 4 (a, b) Caterpillar 
on an Oecophylla nest in 
Guinea, near Conakry. 
Larvae of this undescribed 
species near Niphopyralis 
(Crambidae) feed 
voraciously on weaver ant 
eggs (Dejean et al. 2017). 
(Photo by Piotr Naskrecki)

although this behavior has not been found in other populations of this species 
(Palting 2020). Larvae of another small lichen moth found in Japan, Nudina 
artaxidia, are obligate associates of Lasius ants and feed on honeydew from scale 
insects, along with lichen (chapter frontispiece) (Komatsu and Itino 2014).

Many Eublemma spp. (Erebidae: Boletobiinae) feed on scale insects, where they 
are concealed from attending ants by a portable protective casing (Dejean et  al. 
2016; Lamborn et al. 1914; Pierce 1995; Susilo and Susilo 2015). In Cameroon, 
Dejean et al. (2016) found that Eublemma albifascia lays eggs on ant nests, and 
first-instar caterpillars are carried into Oecophylla longinoda brood chambers by 
workers. Subsequent instars are fed by ants and steal from trophallaxis between 
workers, and ants groom their bodies and drink their anal secretions. The larvae 
acquire colony odors and do not require physical protection from host ants (Dejean 
et al. 2016). Dejean et al. (2017) found 359 caterpillars of Eublemma albifascia in 
only four colonies of Oecophylla longinoda. Due to their intense trophallaxis 
requirements, Eublemma albifascia parasites generally cause the death of the queen 
through neglect, though their numbers are regulated by some parasitoid wasps 
(Dejean et al. 2016). Eclosed adults are mostly ignored and, if occasionally attacked, 
are protected by long, dense scales (Dejean et al. 2016).
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Fig. 5 (a, b) A weaver 
ant- mimicking Homodes 
larva (Erebidae) in 
Singapore. (Photo by 
Lionel Lim. Soh Kam 
Yung [K. Y. Soh] provides 
another full-habitus view at 
iNaturalist #37480826)

In a few wasmannian ant mimics, the same specialized tactile structures are used 
to integrate with ants and to scare off other predators (von Beeren et  al. 2018; 
Kronauer and Pierce 2011). A few Oriental and Australasian species of the genus 
Homodes (Erebidae: Boletobiinae) occur on a wide range of host plants but never 
far from Oecophylla smaragdina weaver ants (Fiedler 1991; Holloway 2005; Leong 
and D’Rozario 2012, iNaturalist #65316827, iNaturalist #27728866). These cater-
pillars are excellent mimics of Oecophylla ants at both the front and the back, with 
a false head on the posterior abdomen and long clubbed setae resembling ant 
appendages (Fig. 5). Waving these setae not only deters visual predators but appears 
to placate Oecophylla workers (video at https://www.facebook.com/
watch/?v=1938845709677099) (Entomological Network of Singapore 2017). 
Structurally similar, possibly glandular setae are found on the thorax and abdomen 
of related larvae documented on iNaturalist, which are not known to be ant- 
associated [e.g., iNaturalist #21087410, iNaturalist #38085822, iNaturalist 
#21414510]. Lokkers (1990) found ant-mimicking looper moth caterpillars in north 
Queensland exclusively on Oecophylla-occupied trees, which may have been larvae 
of Homodes or another group with a similar life history.
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Fig. 6 Stauropus larva 
(Notodontidae) feeding on 
Salix in Italy. The 
elongated thoracic legs 
help early-instar larvae 
mimic ants and in some 
cases are used to 
communicate with ants. 
(Photo by Paolo Mazzei)

 Notodontidae

Phytophagous larvae of Stauropus and Neostauropus (Notodontidae) have enlarged 
mesothoracic and metathoracic legs used to mimic ants in early instars, and spiders 
once larvae become larger, with a terrifying threat display (Fig. 6) (Poulton 1890; 
Pratt et al. 2016). In Britain, photographer Andy Newman experimentally brought 
together first-instar Stauropus fagi larvae and Formica ants and discovered that lar-
vae were ignored after waving their mesothoracic legs and contacting the ants’ 
antennae [http://www.andynewman.org/html/lobster_moth.html]. Dejean et  al. 
(2017) discovered related larvae in Cameroon that use their enlarged mesothoracic 
legs to solicit trophallaxis from associated Oecophylla longinoda ants. The larvae 
also fed on young leaves and extrafloral nectaries. An unidentified larva of this spe-
cies from southern Nigeria may have also been described by Farquharson et  al. 
(1922). Larvae of Afrotropical Amyops ingens strongly resemble Stauropus larvae 
and have much shorter, but still notably elongated, thoracic legs of unknown func-
tion [(iNaturalist #11244196, iNaturalist #11446507]). Perhaps they are used to 
handle soft-bodied Hemiptera or honeydew as in some Lycaenidae and Riodinidae 
(DeVries and Penz 2000; Dejean et  al. 2017). The biology of these fascinating 
Notodontidae remains largely undocumented; more research is needed to under-
stand their ecology and diversity.

 Papilionoidea (Hesperiidae, Nymphalidae, Pieridae)

With over 900 well-documented and more than 4000 inferred myrmecophilous spe-
cies, the butterfly families Lycaenidae and Riodinidae account for an overwhelming 
proportion of caterpillar-ant associations (Table 2). At least a few butterfly species 
in other families are also ant-associated. Malaysian Lotongus calathus caterpillars 
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Fig. 7 Glistening droplets on spines of larva of Phoebis philea (Pieridae) feeding on Senna mexi-
cana being inspected by an unidentified ant, with a second ant feeding on an extrafloral nectary 
nearby. The droplets are thought to be defensive but may in some cases (depending on the ant spe-
cies, host plant, and location) be strikingly attractive to ants (e.g., photo of Catopsilia pyranthe 
surrounded by Anoplolepis gracilipes ants at http://pureoxygengenerators.blogspot.com/2017/10/
some- nature- finds.html). (Photo by James Spencer, kindly provided by Nadia Spencer)

(Hesperiidae) build leaf shelters that are always shared with nesting Dolichoderus 
ants (Igarashi and Fukuda 1997). Chemically protected larvae of Neotropical Vettius 
tertianus (Hesperiidae) are usually found living with predatory ants in ant gardens, 
although not enough is known of their biology to conclude whether or not they are 
true myrmecophiles (Orivel and Dejean 2000).

Ants gathering to drink from leaf exudates generated by herbivores are not 
uncommon, although rarely analyzed, and result in facultative ant interaction with 
caterpillars of various butterfly and moth species (Fiedler 1991; Larsen 2005). For 
example, Young (1978) observed ants using their antennae to stroke a larva of the 
nymphalid butterfly Mechanitis isthmia in Costa Rica, whereupon the larva would 
withdraw from the leaf edge and allow the ants to drink exudates from the newly cut 
surface. Diverse ants commonly drink from the feeding sites of Catopsilia larvae 
(Pieridae), and some ant species appear to find the caterpillars themselves more 
attractive than the leaf exudates (Williams 1995-2020, iNaturalist #10726006 iNat-
uralist #15027508, http://pureoxygengenerators.blogspot.com/2017/10/some- 
nature- finds.html, https://www.flickr.com/photos/129254524@
N06/16162943814/). Larvae of many Pieridae and Saturniidae produce potent 
secretions to deter ants, and occasional reports suggest that the secretions them-
selves are consumed by ants under rare circumstances (Fig. 7) (Fiedler 1991; Hinton 
1951; Smedley et al. 2002).
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 Ant Association in the Lycaenidae and Riodinidae

Throughout Lepidoptera, only the families Lycaenidae and Riodinidae contain ant- 
associated taxa that number more than a few dozen species. The ability to actively 
attract ants with food rewards and sophisticated signaling may help account for their 
surprisingly massive radiation compared with other ant-associated larvae whose 
interactions are more limited and rarely involve food rewards. Non-trophobiotic 
myrmecophiles are limited to ant “hotspots,” where enemy-free space is strongest 
and unique resources are available: either around ant-attended hemipterans, within 
ant nests, on ant-plants, or within the arboreal territories of highly aggressive ants 
like Oecophylla. Correspondingly, trophobiotic organs in Lycaenidae and Riodinidae 
that obligately occur around ant-tended hemipterans and ant nests are often lost or 
modified, most notably in the lycaenid subfamilies Miletinae and Poritiinae and in 
riodinids like Aricoris arenarum (Kaminski et al. 2020b; Shimizu-kaya et al. 2013).

Recent comparative analyses using a well-resolved tribal level phylogeny of but-
terflies indicate that ant association arose once in the ancestor of the Lycaenidae 
nearly 80 mya, twice more recently in its sister family, the Riodinidae, once in the 
subtribe Eurybiina, and once in the Nymphidiini (Espeland et al. 2018). Thus, simi-
lar traits used in ant-caterpillar associations appear to have arisen independently at 
least three times in these two butterfly families.

 Adaptations of Adults

Ant-related visual and chemical cues are used during mate finding and oviposition 
by many ant-associated Lycaenidae and Riodinidae (e.g., Atsatt 1981b; Casacci 
et al. 2019b; Dejean et al. 2017; DeVries 1997; Elgar and Pierce 1988; Elgar et al. 
2016; Fiedler and Maschwitz 1989a; Fiedler and Maschwitz 1989b; Fraser et al. 
2002; Kaminski et al. 2013; Heath 1997; Henning 1983; Kaminski and Carvalho- 
Filho 2012; Martins et al. 2013; Pierce 1984; Pierce and Elgar 1985; Pierce and 
Nash 1999; van der Poorten and van der Poorten 2016; Pringle et al. 1994; Seufert 
and Fiedler 1996; Williams 1995-2020), even in species that are facultatively ant- 
attended (Mota and Oliveira 2016; Wagner and Kurina 1997) or non-trophobiotic 
(Bächtold et al. 2014; Fiedler and Maschwitz 1989b; Funk 1975; Sáfián and Collins 
2014; Sáfián and Larsen 2009; Rodrigues et al. 2010). Many obligate ant associates 
will not oviposit unless ants are present (e.g., Heath 1997)). Chemical eavesdrop-
ping on ants is widespread among myrmecophiles, and lycaenid adults may detect 
ant pheromones as well as visual cues (e.g., Adams et al. 2020; Kaliszewska et al. 
2015; Sáfián and Larsen 2009; Williams 1995-2020). Visual and chemical cues are 
also used by non-myrmecophiles to avoid ovipositing near ant territories (Freitas 
and Oliveira 1996; Van Mele et al. 2009; Sendoya et al. 2009).

Phengaris (=Maculinea) is one of two lycaenid genera with species whose larvae 
are obligately phyto-predaceous, with eggs laid on specific plant hosts that serve as 
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food for the early instars and that later drop to the ground to be carried by workers 
into the ant nest, where they feed on the brood or solicit regurgitations to complete 
development. Recent research on ovipositing females of Phengaris species has 
started to resolve a longstanding puzzle regarding whether or not these parasitic 
butterflies use ants as cues to locate oviposition sites (Carleial et al. 2018; Casacci 
et al. 2019b; Czekes et al. 2014; van Dyck and Regniers 2010; Fürst and Nash 2010; 
Musche et al. 2006; Patricelli et al. 2011; Thomas and Elmes 2001; Wynhoff et al. 
2008; Wynhoff et  al. 2015). Apparently Myrmica ants nesting at the base of 
Origanum vulgare plants (Lamiaceae) damage the roots and thereby induce the 
plants to release defense-related volatile organic compounds, or VOCs, including 
the monoterpenoid carvacrol and its isomer thymol. Ovipositing females of 
Phengaris arion can detect these compounds and use them to identify plants with 
appropriate ant hosts located beneath them (Pech et al. 2007; Patricelli etal 2015). 
The larvae of other species of Phengaris also feed on host plants in the Gentianaceae 
and Rosaceae (Als et al. 2004), and it seems likely that a similar mechanism exists 
on other host plants whereby damage to plant roots caused by ant colonies nesting 
underground may induce the release of VOCs that attract ovipositing females. Cues 
from a number of different plant families may be used by ovipositing females in this 
way, but this remains to be tested.

Chemical signals seem to mediate ant interactions with adults of many lycaenid 
and riodinid butterflies, generally with ants that are also associated with caterpillars 
(Atsatt 1981a; Farquharson et al. 1922; Fiedler and Maschwitz 1989a; Pierce et al. 
2002). These semiochemicals may be particularly important in species that pupate 
within ant nests (Elfferich 1998; Lohman 2004). Various adult Lycaenidae and 
Riodinidae are inspected or groomed by ants (DeVries 1984; Fiedler and Maschwitz 
1989b; van der Poorten and van der Poorten 2016, iNaturalist #36616206, iNatural-
ist #5526494, iNaturalist #62627204, iNaturalist #56774612, iNaturalist 
#66838365). Adults of most Poritiinae and Miletinae (Lycaenidae) feed exclusively 
from extrafloral nectaries and carbohydrate-rich insect exudates, both frequently 
attended by workers of the same ant species that are associated with their own lar-
vae (Figs. 8 and 9) (Atsatt 1981a; Callaghan 1992b; Cottrell 1984; Dejean et al. 
2017; Farquharson et al. 1922; Fiedler and Maschwitz 1989b). Certain Riodinidae 
may have similar habits (Torres and Pomerantz 2016).

 Adaptations of Caterpillars and Pupae

Before pupation, and in some species whenever not feeding, larvae of diverse 
Riodinidae (e.g., DeVries 1997; Kaminski and Carvalho-Filho 2012; Kaminski 
et al. 2020b; Ross 1966) and Lycaenidae enter special shelters built for them by ants 
(e.g., Eastwood et al. 2005; Eastwood et al. 2008a; Ekka and Rastogi 2019; Webster 
and Nielsen 1984) or the ants’ nests themselves (e.g., Benyamini and Bálint 1995; 
Bury and Savchuk 2015; Mizuno et  al. 2019; Wagner 1995). These cohabitation 
behaviors appear to co-opt existing ant behaviors widely used to shelter 
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Fig. 8 Lachnocnema 
butterflies (Lycaenidae: 
Miletinae) collecting 
honeydew from ant-
attended scale insects in 
Gorongosa National Park, 
Mozambique. (Photo by 
Piotr Naskrecki)

Fig. 9 An adult Miletus 
biggsii (Lycaenidae: 
Miletinae) perches among 
aphid-tending 
dolichoderine ants in 
Thailand. (Photo by Henrik 
Petersen. A related 
Logania malayica perches 
similarly among 
myrmicine ants in another 
photo at iNaturalist 
#50360170)

hemipterans. Many caterpillars in seasonally arid and cold regions enter under-
ground ant nests, likely to escape unfavorable conditions. The need to escape the 
increasingly dry conditions and the associated risk of fires that occurred during the 
aridification of Africa in the Miocene may have been an important driver leading to 
the relatively large number of obligately parasitic relationships found in the dry 
savanna habitats of southern Africa and Australia. These regions are also hotspots 
for myrmecochorous plants, those plants with seeds dispersed by ants (Lengyel 
et  al. 2010), possibly for similar reasons, although the phosphorus-poor soils of 
these regions are also likely to have been important (see discussion below) (Westoby 
et al. 1982). Larvae of a number of species have been reported to follow ant trail 
pheromones, but only a few cases of this behavior have been experimentally con-
firmed (Dejean and Beugnon 1996; Fiedler et al. 1996).

Hinton (1951) noted that ant-attended larvae, even within ant nests, may be 
attacked if ants are sufficiently alarmed by an intruder. Most lycaenid larvae can 
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retract their head beneath a sclerotized prothoracic plate and are ventrally flattened, 
shielding vulnerable body parts (Ballmer and Pratt 1988; Fiedler 1991; Malicky 
1969; Malicky 1970; Pierce et al. 2002). Larvae that live in close proximity with 
ants may have a wrinkled cuticle up to 20 times thicker than that of other Lepidoptera 
to avoid harm from the occasional bite (Bächtold and Alves-Silva 2013; Fiedler 
1991; Gnatzy et  al. 2017; Malicky 1969; Malicky 1970). In general, those with 
facultative associations with ants have thicker cuticles than those with obligate asso-
ciations, although this depends in part on the mandible size of the ant associates 
(Dupont 2012). Lycaenid caterpillars also generally lack the thrash reflex to distur-
bance found in other Lepidoptera, which can elicit enhanced attack from ants 
(Bächtold and Alves-Silva 2013; Fiedler 1991).

Ant-attended Lycaenidae and Riodinidae possess a variety of multimodal “ant 
organs” to attract and signal to ants via chemicals or stridulation. Cuticular hydro-
carbons and similar substances protect lycaenid larvae from most ant aggression, as 
described in a later section. In addition, many ant-associated lycaenid and riodinid 
caterpillars are attractive to ants, which groom and antennate various parts of their 
bodies. Ants are often drawn to specific parts of lycaenid larvae bearing dense 
single- celled epidermal glands that Malicky (Malicky 1970) described in English as 
“perforated cupola organs” (PCOs). Kitching (g 1983) translated Malicky’s original 
“porenkuppeln” (Malicky 1969) as “pore cupola organs” (PCOs), and this term has 
been adopted generally. PCOs are also found in many pupae (e.g., Duarte et  al. 
2001; Fiedler 1989b; Fiedler and Seufert 1995; Hinton 1951; Malicky 1970; Pierce 
and Nash 1999). PCOs or putative homologs have been found in the larvae of all 
Lycaenidae and Riodinidae that have been examined (Dupont et al. 2016; Fiedler 
1991; Mota et al. 2014; Nielsen and Kaminski 2018; Pierce et al. 2002; Santos et al. 
2014). As a result, Pierce et al. (2002) suggested that PCOs may represent a key 
preadaptation for the radiations of myrmecophilous Lycaenidae and Riodinidae. 
The ant-associated functions of these organs are likely to be convergent given what 
we now know about the phylogeny of these groups. The function of PCOs in non- 
myrmecophilous caterpillars has not been carefully explored: PCOs are widespread 
among caterpillars of non-myrmecophilous Riodinidae as well as the non-myrme-
cophilous family Hesperiidae, where they were originally called “lenticles” 
(DeVries 1991c; Franzl et al. 1984).

Larval PCOs are often concentrated around spiracles and secretory organs (e.g., 
Downey and Allyn 1979; Fiedler 1991; Kitching and Luke 1985; Mota et al. 2014; 
Mota et al. 2020; Pierce and Nash 1999). Many Lycaenidae also have a higher den-
sity of PCOs on thoracic segments that are attractive to ants (Pierce and Nash 1999). 
Comparing related species or different populations of a single species, PCOs may 
be more numerous or productive in larvae that are more closely ant-associated (e.g., 
Ballmer and Pratt 1991; Kaminski et al. 2013).

In addition, a large number of wedge-shaped, dendritic, mushroom, and other 
highly modified setae appear important to ant interactions of various larvae and 
pupae (DeVries et al. 1986; Downey and Allyn 1979; Duarte et al. 2001; Dupont 
et al. 2016; Fiedler 1989a; Fiedler 1991; Hall and Harvey 2001; Hall et al. 2004; 
Kaminski and Carvalho-Filho 2012; Kaminski et al. 2013; Kaminski et al. 2020b; 
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Fig. 10 Plebejus idas 
larva (Lycaenidae: 
Polyommatini) in Italy 
with everted tentacle 
organs (on left), attended 
by Lasius emarginatus 
ants. (Photo by Paolo 
Mazzei)

Pierce et al. 2002). The presence of dendritic setae appears to be strongly correlated 
with the ants’ interest in larvae (Ballmer and Pratt 1991). These specialized setae 
are generally concentrated near PCOs and other secretory organs and may help 
disperse secretions to arouse ants (Ballmer and Pratt 1991). Others are mechanore-
ceptors that respond to attending ants (Tautz and Fiedler 1992).

Tentacle organs (TOs) are paired, typically eversible structures on the eighth 
abdominal segment of many riodinid and lycaenid larvae that are operated hydro-
statically by specialized muscles (Fig.  10) (Basu and Kunte 2020; Gnatzy et  al. 
2017; Hinton 1951; Vegliante and Hasenfuss 2012). While TOs are potentially part 
of the lycaenid and riodinid ground-plan, they are absent in the riodinid subfamily 
Nemeobiinae, the lycaenid subfamilies Poritiinae and Lycaeninae, all of the 
Miletinae except the genus Aslauga, and a few other genera (Campbell and Pierce 
2003; Fiedler 1991; Pierce et al. 2002). Their function is usually defensive and often 
specialized to signal to ants as discussed below.

 Vibratory Signaling

Larvae of various Lepidoptera produce vibratory signals to deter predators, defend 
larval territories, or attract additional larvae (see Yack, Ch. 7) (e.g., Bura et al. 2009; 
Bura et al. 2011; Dookie et al. 2017; Fletcher et al. 2006; Sanetra and Fiedler 1996; 
Yack et al. 2001; Yadav et al. 2017). Stridulations are a widespread method for ants 
to recruit nestmates for foraging or defense and have correspondingly been adapted 
by some larvae to attract attention (Schönrogge et  al. 2017). One of the earliest 
reports of larval stridulation came from naturalist Charles O.  Farquharson, who 
noted a sensation like an electric shock from touching different lycaenid caterpillars 
(Farquharson et al. 1922). Substrate-borne acoustic signals produced by numerous 
lycaenid and riodinid larvae encourage ant attendance and are similar to those made 
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by attending ants (e.g., Fiedler et al. 1996; Lin et al. 2019; Riva et al. 2017; Schurian 
and Fiedler 1994; Travassos and Pierce 2000). Larval sounds or sound-producing 
organs have been observed in all examined ant-attended lycaenid and riodinid lar-
vae and are only known to be absent in some non-myrmecophilous Riodinidae and 
New World Lycaenidae of the tribe Eumaeini (DeVries 1990; DeVries 1991d). 
Some non-trophobiotic larvae are able to produce sounds, but all belong to genera 
that facultatively associate with ants (Elfferich 1998; Pierce et  al. 2002; Riva 
et al. 2017).

The few described sound production mechanisms in lycaenid larvae are all strid-
ulatory (Hill 1993; Schönrogge et al. 2017; Schurian and Fiedler 1994). The stridu-
latory organ of both the larva and pupa of Arhopala madytus is located between the 
fifth and sixth abdominal segments (Hill 1993), as is the stridulatory organ of most 
lycaenid pupae (Downey 1966). However, in the pupa, the file (sixth segment) is 
posterior to the stridulatory plate (fifth segment), whereas in the larva of A. madytus, 
their placements are reversed. The discrete organs giving rise to these substrate- 
borne vibrations have proved difficult to identify in many species. In the Australian 
lycaenid, Jalmenus evagoras, they seem likely to consist of rings of tiny, serially 
repeating teeth and scrapers occurring between each pair of larval abdominal seg-
ments. When the larva is calling, these areas can be seen to vibrate using high speed 
video (Pierce et al. 2002; Travassos and Pierce 2000).

Pupae of Lycaenidae and Riodinidae also produce several types of vibrations, 
including “chirping” noises audible to humans, using plate-and-file stridulatory 
mechanisms located on membranes between abdominal segments 4 and 7 (Downey 
and Allyn 1973; Downey and Allyn 1978). In addition, “tooth-cast” systems, in 
which one opposing structure of the sound-producing organ is an imprint of the 
other, are found in diverse Lycaenidae (Downey and Allyn 1973), as in pupae of 
Nymphalidae and Papilionidae (Dolle et al. 2018). Acoustic signals play an impor-
tant role in ant recruitment and appeasement by myrmecophilous Lycaenidae and 
Riodinidae but are also widespread in non-myrmecophilous pupae, presumably 
serving as deimatic displays to startle predators as in other Lepidoptera (Dodd 1916; 
Dolle et al. 2018; Downey and Allyn 1973; Elfferich 1998; Lin et al. 2019; Pierce 
et al. 2002; Travassos and Pierce 2000).

 Lycaenidae

The Lycaenidae contain over 5000 species in more than 400 genera distributed 
worldwide (Eliot 1973; Espeland et al. 2018; Pierce et al. 2002). Although different 
species vary in the relative strength and context of ant association, all lycaenid sub-
families have species that are either ant-attended or form some kind of regular asso-
ciation with ants (Table 2).
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 Curetinae

The lycaenid subfamily Curetinae consists of a single genus (Curetis) of 18 species 
and is distributed from India to the Solomon Islands (Eliot 1990). The genus is sig-
nificant inasmuch as it is sister to all other Lycaenidae and may illustrate plesiomor-
phic traits shared with riodinids but lost in other lycaenids (Espeland et al. 2018). 
Curetis larvae can produce loud substrate-borne vibrations (Fiedler et  al. 1995). 
Curetis TOs are housed in large, sclerotized cylinders, which evert long filamentous 
processes when the larva is disturbed, exciting nearby ants (videos at https://www.
youtube.com/watch?v=2AAg26XDtgM, https://www.youtube.com/
watch?v=zhSX_7edW44) (DeVries 1984). Much like those of some non- 
trophobiotic riodinids described below (Nielsen and Kaminski 2018), Curetis TOs 
evert and appear to emit repulsive chemicals, in response to ants and other attackers 
including parasitoid flies and wasps (video at https://www.youtube.com/
watch?v=LUKxmq3_6MU) (Ballmer 2015; DeVries et al. 1986; Fiedler et al. 1995; 
de Niceville 1890; van der Poorten and van der Poorten 2016). Ants usually show 
little interest in Curetis larvae but often accompany them to drink from leaf exudates 
where larvae have been feeding (Fig. 11) (DeVries 1984; Fiedler et al. 1995).

The remaining Lycaenidae form a clade that is ancestrally ant-attended (Espeland 
et  al. 2018). Most species of the subfamilies Aphnaeinae, Theclinae, and 
Polyommatinae have a dorsal nectary organ [DNO], a unique slit-like glandular 
invagination on the 7th abdominal segment that produces attractive secretions for 
ants and appears in the 2nd or 3rd instar (Daniels et al. 2005; Fiedler 1991; Hinton 
1951; Pierce et al. 2002). A superficially similar abdominal invagination found in 
Curetinae may be a vestigial DNO or perhaps simply a muscle attachment site 
(DeVries et al. 1986). The DNO contains 2–4 individual glands, which structurally 
and developmentally resemble modified setae (Hinton 1951; Malicky 1970; 
Newcomer 1912; Pierce and Nash 1999; Vegliante and Hasenfuss 2012). Muscles 
around the DNO usually allow it to push upward and extrude liquid droplets or 
retract and suck back these secretions (video at https://www.youtube.com/

Fig. 11 Curetis thetis 
(Curetinae) larva with ants 
in Sri Lanka. (Photo by 
Nuwan Chathuranga)
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watch?v=fCho3Vrt2bU) (Basu and Kunte 2020; Pierce and Nash 1999). Larvae of 
many obligately ant-attended species have been reported to die in captivity from 
mold and/or infection without ants to remove built-up secretions around the opening 
of the DNO (Cottrell 1984; Hinton 1951; Williams 1995-2020).

Caterpillars of some species have been shown experimentally to deploy their 
DNO secretions strategically, increasing the rate of droplets provided when they are 
vulnerable or under perceived attack and decreasing per capita secretions in larger 
larval aggregations (Agrawal and Fordyce 2000; Axen and Pierce 1998; Axén et al. 
1996; Leimar and Axén 1993). Caterpillars may also increase secretion rates when 
more ants are present; this might allow them to retain a larger retinue of ants (Axén 
2000; Fiedler and Hagemann 1992). Curiously, the dorsal nectary organ remains 
functional in many parasites that enter the ant nest such as Niphanda fusca and spe-
cies of Phengaris, suggesting that secretions from the DNO in these species may 
contain essential substances enabling them to manipulate attendant ants.

The TOs of species in the Aphnaeinae and the Theclinae-Polyommatinae assem-
blage appear to secrete volatile chemicals that excite ants to defend the larva 
(Casacci et al. 2019b; Fiedler 1991; Fiedler et al. 1996; Henning 1983; Pierce et al. 
2002). Lycaenid TOs are most frequently everted to attract ants when caterpillars 
are disturbed or are traveling to a new location or when ant-caterpillar interactions 
first begin (Axén et  al. 1996; Fiedler et  al. 1996; Fiedler and Hagemann 1992; 
Leimar and Axén 1993). Secretions from the tentacle organs of lycaenids have been 
difficult to detect and/or characterize chemically (Gnatzy et al. 2017; Pierce and 
Nash 1999). The TOs of the Japanese species Shirozua jonasi (Theclinae: Theclini) 
were described to contain dendrolasin (Yamagushi and Shirozu 1988), a compound 
found in some ant alarm pheromones (Hölldobler and Wilson 1990). Although the 
chemicals involved are unknown, extracts from the TOs of Aleiodes dentatis 
(Aphnaeinae) were shown to elicit an alarm response from workers of the attendant 
ant species (Henning 1983). Alarm pheromones are also mimicked by many myr-
mecophilous rove beetles and wasps (Stoeffler et al. 2007; Thomas et al. 2002).

In terms of delivery, some authors have speculated that the tentacle organs of 
Lycaenidae might disperse chemical signals that are coated on their long, finely 
branched apical setae when the tentacle is withdrawn into an evagination formed by 
the cuticle (Fiedler et al. 1996; Fiedler et al. 1995; Hinton 1951; Kitching and Luke 
1985; Pierce and Nash 1999; Sanetra and Fiedler 1996). Additional research is war-
ranted, as Gnatzy et al. (2017) carefully examined the histology of these setae and 
found no evidence that they were glandular in nature.

 The Theclinae-Polyommatinae Assemblage

Theclinae and Polyommatinae are both polyphyletic as traditionally defined but 
together form a well-supported monophyletic group (Espeland et  al. 2018). The 
Theclinae-Polyommatinae assemblage is widespread, including over 4000 species 
in nearly 350 genera. Larvae are mostly phytophagous and ant-associated, but 
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Fig. 12 The larvae of 
several species of 
Hypolycaena (Theclinae: 
Hypolycaenini) are 
attended by Oecophylla 
ants, such as this H. erylus 
in Malaysia being 
accompanied as it travels. 
(Photo by Masatoshi Sone)

several lineages are non-myrmecophilous (Table 2, Fig. 12, videos at https://www.
youtube.com/watch?v=GsSlcA0WXnk, https://www.youtube.com/
watch?v=43vmltWoSdo].

With over 1300 species that typically only form facultative ant associations, the 
tribe Polyommatini is the largest tribe of Lycaenidae. Only a few obligately ant- 
associated taxa are known in this tribe outside of the two unique genera, 
Lepidochrysops and Phengaris (Polyommatini). Larvae of the some 130 species of 
Afrotropical Lepidochrysops typically feed on flowers until the 3rd instar, when 
they begin to mimic ant brood and are carried by workers of species of Camponotus 
(subfamily Formicinae) into the nest to feed on brood and/or engage in trophallaxis 
(Heath and Claassens 2003; Henning 1983).

Like Lepidochrysops, the approximately ten species of Palearctic Phengaris (= 
Maculinea) are also phyto-predaceous. The larvae of different species of Phengaris 
initially feed on flowers and in the fourth instar are carried by Myrmica workers 
(subfamily Myrmicinae) into the nest, where different larvae, even those derived 
from eggs laid in the same year, will remain parasitic for either 1 or 2 years (Elmes 
et al. 2019; Thomas et al. 1998; Witek et al. 2006). Acceptance of Phengaris by host 
ants is mediated by specialized chemical mimicry of ant hosts (Akino et al. 1999; 
Casacci et al. 2019b; Casacci et al. 2019a; Nash et al. 2008; Schönrogge et al. 2004; 
Solazzo et al. 2013). Although most Phengaris feed directly on ant brood, a group 
of “cuckoo” species have larvae that specialize on trophallaxis (Als et  al. 2004; 
Thomas and Elmes 1998). Both predatory Phengaris arion and cuckoo Phengaris 
rebeli are nest parasites whose larvae have been reported to produce acoustic signals 
resembling those of their host ant queens and giving them extreme priority in feed-
ing and protection (Barbero et al. 2009a; Barbero et al. 2009b; Barbero et al. 2012; 
Sala et al. 2014; Thomas et al. 2013). Most Phengaris species can parasitize nests 
of multiple ant species, although local populations are often strongly specialized on 
different hosts (Pech et al. 2007; Tartally et al. 2019; Ueda et al. 2016; Witek et al. 
2011; Witek et al. 2008; Sielezniew et al. 2010; Thomas et al. 2013). Phengaris 
arion has become a classic conservation success story, after recognition of its 
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obligate relationship with a single ecologically restricted Myrmica species in the 
UK facilitated the reintroduction of the caterpillar species (Thomas et al. 2009).

First-instar larvae of East Asian Niphanda fusca (Niphandini) feed on aphid hon-
eydew, but later-instar larvae enter Camponotus nests, where they chemically mimic 
male ants and are fed by workers (Hojo et al. 2014a; Hojo et al. 2009). Larvae of 
Phengaris, Lepidochrysops, and Niphanda fusca that enter the ant nest in later 
instars have an unusual growth pattern, growing more than ten times as much once 
in the ant nest as would be predicted from their earlier stages (Elmes et al. 2001). 
Two Afrotropical species of Anthene (Lycaenesthini) are parasites in nests of spe-
cies of Crematogaster (Williams 1995-2020). A few related larvae—Tropical Asian 
Chilades lajus (Polyommatini) and Afrotropical Triclema lamias (Lycaenesthini)—
may prey on aphids and scale insects (Farquharson et al. 1922; Pierce 1995). Many 
other plant-feeding species supplement their larval diet with hemipteran honeydew 
under certain conditions (Fig. 13) (e.g., Pierce and Elgar 1985).

Only a few other parasitic species can be found within the remaining tribes that 
are currently non-monophyletically grouped as Theclinae. All 11 species of the 
Australian genus Acrodipsas (Eastwood and Hughes 2003; Miller and Lane 2004; 
Sands and Sands 2015) and a few species within the mostly phytophagous and 
highly ant-associated genera Ogyris and Arhopala are brood predators in ant nests 
(Braby 2000; Fiedler 2012; Pierce 1995). Palearctic Shirozua larvae mostly feed on 
hemipterans and their excretions but also sometimes on Lasius or Camponotus ant 
trophallaxis (Fiedler 2012; Pierce 1995; Zhou and Zhuang 2018). Shirozua jonasi 
may enter ant nests to pupate, and adults are protected by dense cotton-like hairs 
(Cottrell 1984).

Although widely distributed, over 90% of the approximately 1096 species in the 
tribe Eumaeini are found in the Neotropical region, and all are either non- 
myrmecophilous or facultatively so, usually only sporadically ant-attended. The 
Old World taxa are clustered in a single clade consisting largely of the species-rich 
sections Callophrys, Erora, and Satyrium. Their huge radiation appears to be asso-
ciated with intense sexual selection, as males have a great diversity of secondary 
sexual traits such as brush organs associated with the genitalia and androconial 

Fig. 13 A fourth-instar 
larva of Jalmenus daemeli 
(Theclinae: Zesiini) feeds 
on secretions from a 
margarodid scale, while 
both are tended by workers 
of Iridomyrmex rufoniger. 
These Australian 
caterpillars are usually 
herbivorous but may 
facultatively feed on 
honeydew secretions. 
(Photo by Naomi Pierce)
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Fig. 14 Cycad-feeding 
Eumaeus larvae 
(Theclinae: Eumaeini), 
such as these E. toxea in 
Nayarit, Mexico, are toxic 
and not ant- associated. 
(Photo by Juan Cruzado 
Cortés)

wing scent pads and patches that waft pheromones (Valencia-Montoya et  al. In 
review). Caterpillars of several genera are aposematically colored or bear defensive 
tubercles and scoli, resembling Limacodidae (Fig. 14) (e.g., Kaminski et al. 2010b; 
Silva et al. 2014). Some respond to disturbance by curling their body or hanging off 
the substrate on a silk thread, behaviors otherwise unknown in Lycaenidae (Fiedler 
1991; Silva et  al. 2014). The approximately 175 species in the detritivorous 
Neotropical subtribe Calycopidina have never been reported with ants, but limited 
evidence suggest that some species might be facultatively ant-associated (Duarte 
and Robbins 2010; Nishida and Robbins 2020, supplemental table from Schär et al. 
2018; Silva et al. 2014).

A number of studies have looked at the developmental effects of ant attendance 
on caterpillars of the Theclinae-Polyommatinae assemblage. Different attendant ant 
species differ in their impact on survival and development (Fraser et  al. 2001; 
Kaminski and Rodrigues 2011; Mizuno et  al. 2019; Trager and Daniels 2009; 
Saarinen and Daniels 2006; Wagner 1993). The costs and benefits of ant attendance 
are also borne differently by males and females, probably based on differing physi-
ological demands on adults of each sex to ensure reproductive success (Mizuno 
et al. 2019; Pierce et al. 1987). Measured effects of ant attendance on developmental 
times and adult sizes vary extensively between different species (Baylis and Pierce 
1992; Cushman et  al. 1994; Fiedler and Hölldobler 1992; Fiedler and Hummel 
1995; Fiedler and Saam 1994; Fraser et al. 2001; Kaminski and Rodrigues 2011; 
Mizuno et  al. 2019; Pierce and Nash 1999; Pierce et  al. 1987; Robbins 1991; 
Saarinen and Daniels 2006; Trager et  al. 2013; Wagner 1993). The methods 
employed in quite a few of these studies involve placing ants and larvae together in 
disturbed laboratory environments in order to create an “ant-attended” treatment. 
Controlled experiments using intact ant colonies containing queens and with natu-
rally foraging workers tending caterpillars feeding on live host plants are difficult to 
carry out, but they seem likely to yield different results from treatments in which 
individual workers are simply enclosed with caterpillars feeding on cuttings to sim-
ulate natural tending. For example, field versus laboratory experiments found 
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different effects on developmental times of facultatively ant-associated larvae of 
Glaucopsyche lygdamus (Fraser et al. 2001; Pierce and Easteal 1986).

Leguminous host plant use is broadly correlated with ant attendance within the 
Theclinae-Polyommatinae assemblage (Fiedler 1995; Pellissier et al. 2012a; Pierce 
1985). The relationship may not be causal, but protein-rich foods could help cater-
pillars produce nitrogen-rich secretions for ants. For example, individual larvae of 
Jalmenus evagoras larvae are tended by more ants per capita when they are fed 
higher-quality host plants that have been treated with nitrogenous fertilizer than 
when feeding on lower-quality control plants (Baylis and Pierce 1991). Similarly, 
feeding on flowers may lead to greater larval growth and in some cases has been 
shown to increase the volume of DNO secretions (Burghardt and Fiedler 1996; 
Collier 2007; Pierce and Easteal 1986; Wagner and Kurina 1997). The distribution 
of legumes and their symbiotic bacteria might also exert indirect effects on lycaenid 
biogeography (Steidinger et al. 2019). Feeding on Fabaceae appears to be an ances-
tral state of all phytophagous lycaenid subfamilies with the exception of the 
Lycaeninae (Boyle et al. 2015; Espeland et al. 2018; Fiedler 1991). Thus, the cor-
relation between ant attendance and legume feeding might be more appropriately 
viewed as one where species that switch to less nutritious food sources are unlikely 
to remain ant-attended (Fiedler 1995).

 Lycaeninae

The approximately 110 species of Lycaeninae, which form a sister group to the 
Theclinae-Polyommatinae assemblage, have an unusually wide, disjunct distribu-
tion that includes all major zoogeographic regions. All described species of 
Lycaeninae lack a dorsal nectary organ and tentacle organs, but larvae and pupae 
possess stridulatory organs and sometimes enter ant nests (Bascombe et al. 1999; 
DeVries 1991d; Downey and Allyn 1973; Fiedler 1991; Gibbs 1980; Heath and 
Claassens 2003; Yago et al. 2010). Furthermore, a few species have been reported 
possibly to rely on ants for oviposition, and these caterpillars may also be somewhat 
attractive to ants (Ballmer and Pratt 1991; Fiedler 1989a; Funk 1975; Oliver 2007).

 Miletinae

The lycaenid subfamily Miletinae is notably missing from the Neotropics and west-
ern Palearctic (and has only one species in the Nearctic). All 190 species in 13 
genera are thought to be entomophagous, eating either ants, their regurgitations, or 
ant-associated hemipterans and their secretions (Fig. 15, video at https://www.you-
tube.com/watch?v=ZmCz2UxKaHA) (Cottrell 1984; Eliot 1986; Kaliszewska et al. 
2015; Pierce 1995). Many adult Miletinae have an especially long, sclerotized abdo-
men and legs, possibly to protect against the occasional ant bite while alighting and/
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Fig. 15 This ant-
associated Lachnocnema 
laches larva (Miletinae) 
feeding on treehopper 
nymphs was reared in 
South Africa. (Photo by 
Suncana Bradley)

or ovipositing among hemipteran prey that are being tended by ants (Cottrell 1984; 
Pierce 1995).

Ants intensively palpate and display interest in the larvae of many Miletinae, but 
larvae lack dorsal nectary organs, and only species in the Afrotropical genus Aslauga 
possess tentacle organs (Bascombe et al. 1999; Claassens and Heath 1997; Cottrell 
1984; Dejean et al. 2017; Lohman and Samarita 2009; Pierce et al. 2002). Most 
appear obligately ant-associated (Table 2). Larvae of Oriental and Palearctic Spalgis 
and Taraka spp. and Nearctic Feniseca tarquinius appear facultatively ant- associated 
and are protected by silk shelters or cuticular hydrocarbons of ant-attended prey 
(photos at iNaturalist #57006925 and iNaturalist #14834663) (Cottrell 1984; 
Lohman et al. 2006; Youngsteadt and Devries 2005). Larvae of F. tarquinius pro-
duce vibratory signals that may be ant-related (Mathew et al. 2008).

Kaliszewska et  al. (Kaliszewska et  al. 2015) found that the subfamily of 
hemipteran- attending ant is strongly conserved phylogenetically within Miletinae, 
whereas hemipteran host preference can be quite broad (Fiedler and Maschwitz 
1989b; Lohman and Samarita 2009). For example, lycaenids in the genus Miletus 
appear to associate only with species of ants in the genus Dolichoderus, which 
adults use to find their hemipteran prey. All 27 species in the southern African genus 
Thestor are thought to parasitize ants in the genus Anoplolepis (Formicinae), par-
ticularly A. custodiens (Claassens and Dickson 1980; Clark and Dickson 1971; 
Pringle et al. 1994). While the larvae of the majority of Miletinae feed on Hemiptera, 
later instars may occasionally be carried into the ant nest, where they feed on ant 
regurgitations and sometimes also ant eggs and detritus (Clark and Dickson 1960; 
Clark and Dickson 1971; Heath and Claassens 2000; Heath and Claassens 2003; 
Heath and Pringle 2004; Williams and Joannou 1996).

Caterpillars of the sister genera Liphyra and Euliphyra inhabit the nests of 
weaver ants in the genus Oecophylla (Fig.  16). Oriental Liphyra brassolis and 
Liphyra grandis feed voraciously on ant brood and are protected from occasional 
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Fig. 16 Liphyra brassolis 
larva (Miletinae) 
displaying its highly 
sclerotized, tank- like 
dorsum on the outside of 
an Oecophylla nest in 
Queensland, Australia. 
(Photo by Martin 
Lagerwey)

attack by a thick, bulky “chain link” integument derived from modified setae (Braby 
2000; Dupont et  al. 2016; Pierce 1995). African species of Euliphyra also coax 
trophallaxis, intercept trophallaxis between workers, and steal brood within 
Oecophylla nests (Dejean et  al. 2017; Fiedler 2012). Liphyra pupae are entirely 
enclosed within the hardened exuviae of the last larva instar, or puparium, and 
Euliphyra pupae only partially emerge during larval-pupal ecdysis (Eltringham 
1913). Euliphyra larvae have been shown experimentally to find Oecophylla nests 
by following ant trail pheromones (Dejean and Beugnon 1996), and Liphyra prob-
ably do this as well (Common and Waterhouse 1981; Pierce et al. 2002). Larvae of 
Liphyra, along with those of Thestor, have short, stubby antennae used to seek and 
manipulate prey (Dupont et al. 2016). Adult Liphyra are protected upon eclosion by 
a thick vestiture of greasy, loose scales that slip off in the mandibles of vicious 
attacking ants, similar to several other species that pupate in ant nests (Atsatt 1981a; 
Cottrell 1984; Dodd 1902; Hinton 1951; Pierce 1995).

The Miletinae likely constitute the largest radiation of entomophagous lepidop-
terans (Cottrell 1984; Pierce 1995), and ant association may be linked to the success 
of this dramatic dietary shift. Body plan constraints may limit the success of preda-
tory caterpillars, except around concentrated food resources or in situations where 
there are few competing predators (Pierce 1995)—ant brood and ant-attended 
hemipterans meet both of these conditions. The reverse dietary shift in spiders fol-
lows the same principle: the only two spider species with known specializations for 
plant-feeding are found on well-defended ant-plants with few other herbivores 
(Meehan et al. 2009; Nyffeler et al. 2016; Painting et al. 2017).

 Aphnaeinae

The Aphnaeinae, which along with the Poritiinae are sister to the Miletinae 
(Espeland et  al. 2018), are a largely African subfamily that seems to have been 
ancestrally associated with Crematogaster ants and legume feeding (Boyle et  al. 
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Fig. 17 Cigaritis 
takanonis larvae 
(Aphnaeinae) tended by 
Crematogaster ants in 
South Korea. (Photo by 
iNaturalist user clurarit)

2015). All species whose life histories are known appear obligately ant-associated 
(Fig. 17, Table 2). Moreover, at least one species in each of nine genera is aphy-
tophagous, feeding on hemipterans or the eggs, brood, or regurgitations of ants 
(Boyle et al. 2015; Pierce 1995; Sanetra and Fiedler 1996). One species, Aleiodes 
pallida, is known to feed in early instars on species of Aspalathus (Fabaceae), but 
Heath and Claassens (Heath and Claassens 2000) were able to rear final-instar cat-
erpillars of this species in observation nests of the formicine ant, Lepisiota capensis, 
where caterpillars selectively ate only the ant eggs and not the brood. Additional 
evidence suggests that several other species of Aloiedes may share this ability to 
shift from eating plants to eating ant eggs in the final instar. Other species, with 
exclusively parasitic larval habits, appear in several otherwise phytophagous genera 
(Basu and Kunte 2020; Fiedler 2012; Heath and Claassens 2003; Pierce 1995). 
Many Aphnaeinae depend on the presence of a specific species of ant to oviposit 
(Heath 1997). Dish organs or dew patches are dish-like depressions found on the 
anterior abdomen in several ant-attended genera of Aphnaeinae that appear to pro-
duce reward secretions (Basu and Kunte 2020; Clark and Dickson 1971; Cottrell 
1984; Vegliante and Hasenfuss 2012). Several authors note that caterpillars of dif-
ferent species of Aphnaeinae will die if ants are not present to remove secretions 
from the dew patches and the DNO to prevent them from growing moldy (e.g., 
Heath 1997; Williams 1995-2020). Tentacle organs of aphnaeine larvae are often 
housed in protruding cylindrical bases and can be deployed almost like a cat-o’-
nine-tails to shoo away overly persistent ants from the DNO (video at https://www.
youtube.com/watch?v=Qkd23Pmucmk) (Fiedler 1991).

 Poritiinae

The Poritiinae are a subfamily of lycaenid butterflies with non-trophobiotic caterpil-
lars. The approximately 729 species are divided into two clades: the small Asian 
tribe Poritiini and the large African tribe Liptenini (sometimes split further). Among 
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these, the Liptenini are notable for their lichenivorous diet, although larvae of 
Deloneura have also been recorded feeding on honeydew near ants (Heath and 
Claassens 2003; Williams 2006). Larvae of some species feed on lichens growing 
on bark, rocks, or sticks along the ground and may not be found around ants (Larsen 
2005; Williams 2006). While poritiine larvae in the generally open habitats of 
southern Africa are  generally  facultatively ant-associated (with the exception of 
Deloneura), most species in the wetter forests of West Africa seem to be obligately 
ant-associated (Bampton 1995). Adults of many species are only found around indi-
vidual colonies of arboreal Crematogaster ants (Larsen 2005; Sáfián 2015b), and 
caterpillars of several genera have been reared from ant-infested trees (Callaghan 
1992a; Dejean et al. 2017; Jackson 1937; Sáfián 2015a; Sáfián and Collins 2014; 
Sáfián and Larsen 2009). Over 50% of Poritiinae belong to genera that appear to 
contain obligate ant associates (Table 2). Obligately ant-associated poritiines tend to 
be rare, and some species have only ever been found in association with a single 
arboreal ant colony, raising considerable conservation concern (Larsen 2005; 
Williams 1995-2020). The lack of obligate ant association in some genera of 
Poritiinae is perhaps a secondary loss—except for the Poritiini that remain under-
studied, all major lineages of Poritiinae include species apparently only found on 
trees along with their associated ant species. Together, the subfamilies Miletinae, 
Aphnaeinae, and Poritiinae probably constitute the largest single radiation of obli-
gately ant-associated Lepidoptera.

All caterpillars of Poritiinae are covered in long bristles that appear to repel ants 
(Callaghan 1992b; Dejean et al. 2017). They are probably also chemically defended, 
as larvae of many species interact with ants with no sign of overt conflict (Farquharson 
et al. 1922; Sáfián and Collins 2014; Sáfián and Larsen 2009). Ants are repelled 
from many liptenine caterpillars, perhaps because they secrete toxic chemicals. 
Some species form large larval aggregations, and others appear to be aposematic 
(Sáfián 2015a; Sáfián and Larsen 2009). Tussock moth caterpillars (Erebidae: 
Lymantriinae) protected by defensive glands are sometimes found near poritiine 
caterpillars in Africa and may similarly be associated with arboreal ant colonies 
(Farquharson et al. 1922; Hinton 1951). These lymantriine and poritiine caterpillars 
are visually similar and possibly form a Müllerian mimicry complex (Farquharson 
et al. 1922).

 Riodinidae

Riodinidae are sister to Lycaenidae, and while the 153 genera of Riodinidae are 
distributed worldwide, more than 1400 species are found in Central and South 
America. The ca. 120 Old World species are concentrated in Southeast Asia 
(Espeland et al. 2015; Seraphim et al. 2018). Most Riodinidae are not known to be 
ant-associated and possess long setae and chemical defenses that prevent ants from 
getting too close (e.g., Ballmer and Pratt 1988; DeVries 1988a; Fiedler 1991; 
Kaminski 2008a; Mota et al. 2014; Nishida 2010; Vélez-Arango et al. 2010). Larval 
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Fig. 18 Aposematic 
Emesis aurimna larva 
(Riodininae: Emesidini) in 
Costa Rica. (Photo by Karl 
Kroeker)

aggregation and aposematism are also widespread among riodinids (Fig. 18) (Allen 
2010; Callaghan 1986; Janzen and Hallwachs 2021; Nishida 2010). Recorded ant 
associations are limited to the tribe Nymphidiini and subtribe Eurybiina of the tribe 
Eurybiini, both of which are in the strictly Neotropical subfamily Riodininae 
(Espeland et al. 2015). Almost a thousand riodinid species belong to genera that are 
non-trophobiotic and generally not known to be ant-associated (Table 2).

 Eurybiini

In ant-attended larvae of the subtribe Eurybiina of the riodinid tribe Eurybiini, mod-
ified TOs, called tentacle nectary organs (TNOs), evert to release a drop of fluid that 
ants eagerly drink (Horvitz et al. 1987). However, larvae of the subtribe Mesosemiina, 
sister to the subtribe Eurybiina (Espeland et al. 2018; Seraphim et al. 2018), have 
never been found with ants, and their TOs are protected by defensive bristles 
(Nielsen and Kaminski 2018; Vélez-Arango et  al. 2010). Nielsen and Kaminski 
(2018) found that TOs of these larvae evert and extrude a droplet of liquid when 
attacked by various predators including wasps, biting midges, and lacewing larvae. 
Ants that came into contact with this liquid cleaned themselves and shunned the 
larva (Nielsen and Kaminski 2018). Larvae of Symmachiini (Riodininae), which 
are not ant-associated, also possess tentacle organ openings that may prove to have 
a similar function (Seraphim et al. 2018).

 Nymphidiini

In the riodinid tribe Nymphidiini, all known larvae are ant-associated and typically 
secrete liquid droplets from glandular tissue within the tentacle organs for ants to 
imbibe (Fig.  19) (Callaghan 1986; DeVries 1988b; DeVries 1997; DeVries and 
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Fig. 19 Ant-attended 
Synargis calyce larva 
(Nymphidiini) in Brazil. 
(Photo by Kel Silva)

Penz 2000; Hall and Harvey 2001; Kaminski 2008b; Kaminski and Carvalho-Filho 
2012; Kaminski et al. 2016; Kaminski et al. 2013; Mota et al. 2020; Ross 1964; 
Torres and Pomerantz 2016). The TNOs may be everted most often when the larva 
is vulnerable or attending ants have only started to arrive (DeVries 1988b).

In a handful of related Nymphiidini, a pair of metathoracic anterior tentacle 
organs (ATOs) induce alarm in attending ants, sensitizing them to future threats 
much like the TOs of Lycaenidae (DeVries 1988b, 1997; Kaminski and Carvalho- 
Filho 2012; Kaminski et al. 2016; Penz and DeVries 2006). Brush-like setae at the 
apex of the ATOs likely help disperse volatile chemicals (DeVries 1997; Ross 
1964). DeVries (1988b) found that the ATOs are important for these larvae to main-
tain the attention of attending ants and activate most often when the larva is initiat-
ing contact or vulnerable. Some phylogenetically earlier-branching Nymphidiini 
have thoracic PCO clusters that appear homologous in position to the anterior ten-
tacle organs and similarly excite ants (Kaminski et al. 2013).

Balloon setae, swollen structures on the prothorax, may play a role in myrme-
cophilous interactions in some Nymphidiini that lack ATOs (Kaminski 2008a; Penz 
and DeVries 2006). However, balloon setae appear to serve a largely defensive 
function and are shared by many non-myrmecophilous caterpillars (Fig. 20) (Hall 
et al. 2004; Kaminski et al. 2013; Mota et al. 2014). While Zabuella paucipuncta 
(Nymphidiini) lacks ATOs, a unique cervical gland that is exposed when ants anten-
nate the balloon setae causes the ants to react in alarm (DeVries et al. 2004).

Adaptations for ant attendance have largely been lost in the riodinid genus Stalachtis 
(Nymphidiini), but caterpillars remain facultatively ant-associated, and their cuticle 
appears attractive to diverse ants, much as in some non-trophobiotic lycaenids (Espeland 
et  al. 2015; Seraphim et  al. 2018, https://www.flickr.com/photos/142712970@
N03/33322969114, https://www.flickr.com/photos/142712970@N03/40459961724, 
https://www.flickr.com/photos/142712970@N03/38713147222/, https://www.flickr.
com/photos/142712970@N03/27298752638/, https://www.flickr.com/pho-
tos/142712970@N03/34660951953/, https://www.flickr.com/photos/142712970@
N03/48374845847/).
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Fig. 20 Non- 
myrmecophilous Caria ino 
larva (Riodininae: 
Riodinini) in Texas, 
displaying orange balloon 
setae. (Photo by Joseph 
Connors IV)

Vibratory signals in ant-attended riodinid larvae are produced through several 
different mechanisms. Larvae of ant-attended Eurybiini produce sound by rubbing 
small teeth on the cervical membrane against granulations on the head (DeVries and 
Penz 2000; Travassos et  al. 2008). Larvae of ant-attended Nymphidiini produce 
sounds using vibratory papillae, small rodlike structures on the prothorax that rub 
against granulations on the head. Larvae can adjust the beat frequency of the vibra-
tory papillae, with higher rates attracting more ants. Vibratory papillae of Thisbe 
irenea beat fastest when the larva is stressed, traveling, or during initial contact with 
ants (DeVries 1988b).

Riodinidae in several genera have independently evolved hemipteran diets 
(DeVries 1997; Mota et al. 2020). Many species in both Eurybiini and Nymphidiini 
cohabit with ants, including a single species, Aricoris arenarum, in which the first 
two instars steal honeydew from ant-attended hemipterans and solicit trophallaxis, 
and later instars feed by trophallaxis within Camponotus nests (DeVries 1997; 
Kaminski et  al. 2020b; Robbins et  al. 1996). Another riodinid caterpillar was 
recently found preying on ant brood in arboreal nests of Neoponera villosa (Rocha 
et al. 2020). As in the Lycaenidae, adults of aphytophagous Riodinidae frequently 
have greasy wings that may help them to escape ants (DeVries 1997; Espeland et al. 
2015; Hall and Harvey 2002), and the greasiness of wings has been used to success-
fully predict larval diet in at least one instance (Hall 2007; Mota et al. 2020). The 
TNOs no longer secrete rewards in ant-associated hemipterophagous riodinids, but 
still signal to ants (Kaminski et al. 2020b; Mota et al. 2020), much as nectary organs 
have been lost in the predatory lycaenid subfamily Miletinae. The predatory larvae 
of Neotropical Pachythone spp. (Mota et al. 2020) are also remarkably convergent 
in appearance and adaptive morphology to the ecologically similar larvae of 
Afrotropical Aslauga spp. (Lycaenidae: Miletinae) (Dejean et al. 2017).
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 Mutualism and Manipulation: Caterpillar-Ant Trophobiosis 
in Lycaenidae and Riodinidae

All ant species known to tend trophobiotic caterpillars are agricultural in the sense 
that they also harvest plant extrafloral nectar and the honeydew produced by 
Hemiptera (DeVries 1991b; Eastwood and Fraser 1999; Fiedler 2001, 2006; Pierce 
and Elgar 1985). They include genera such as Iridomyrmex, Oecophylla, 
Camponotus, and Crematogaster that are among the most dominant ants in the 
regions where they occur, with wide distributions and large colony sizes that are 
often polydomous in structure. Caterpillars may take advantage of ant preadapta-
tions to harvest carbohydrate rewards, which are essential resources for ants in 
many environments (Blüthgen and Fiedler 2002, 2004; Blüthgen et  al. 2003; 
Davidson et al. 2003; Dejean et al. 2007; Grover et al. 2007; Kaspari et al. 2020; 
Kaspari et al. 2012; Pohl et al. 2016; Ribas and Schoereder 2004). Although bio-
chemically modified to attract ants in many species, hemipteran honeydew is an 
excrement, produced whether attendant ants are present to collect it or not (Stadler 
and Dixon 2005). Semutophila saccharopa (Tortricidae) are the only caterpillars 
that produce sugar-rich excrement for ants in a manner similar to aphids. In contrast, 
lycaenid and riodinid larvae produce secretions tailored specifically for their ant 
associates and released from specialized exocrine glands. This distinction is an 
important one because exocrine glands provide opportunities for lycaenids and rio-
dinids to fine-tune their secretions to manipulate ant behavior, without necessarily 
providing nutritious rewards.

Ants, although they confer substantial overall benefit to aphid populations, 
sometimes consume honeydew-producing hemipteran mutualists, particularly when 
alternative carbohydrate sources are available (Offenberg 2001; Shibao et al. 2009; 
Silveira et  al. 2010; Stadler and Dixon 2005). In contrast, ants have been rarely 
reported to attack lycaenid larvae except under unnatural circumstances in captivity. 
Ants suffer a serious opportunity cost when they invest in protecting caterpillars 
rather than preying on them, especially facultatively ant-attended lycaenids whose 
secretions may provide poor-quality rewards. The striking absence of overt ant pre-
dation also suggests that lycaenid caterpillars must be able to manipulate ants, at 
least sufficiently to avoid aggression (Fiedler 1998a; Fiedler et al. 1996).

A number of lycaenid larvae mimic the cuticular hydrocarbon (CHC) profiles of 
host plants or ants or conceal themselves entirely by lacking recognizable mole-
cules (Barbero 2016; Inui et al. 2015; Lima et al. 2020; Lohman 2004; Morozumi 
et al. 2019), much as reported for different honeydew-producing hemipterans (Endo 
and Itino 2013; Silveira et al. 2010). This “cloak of invisibility” can ensure that a 
caterpillar is not attacked by the ants, even if it is not actively tended. CHC mimicry 
of ants plays an intimate role in the adoption of parasitic species like Phengaris by 
host ants, as reviewed by Barbero (2016) and Casacci et al. (2019b). Chemical dis-
guise may be observed in other groups when more lycaenid species are studied, but 
it is clearly not universal (Hojo et al. 2014a; Omura et al. 2009). Other mechanisms 
might also exist to avoid ant predation. Pupae of facultatively ant- attended Lycaeides 
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argyrognomon, which sometimes cohabit with Camponotus or Formica host ants, 
have been found to subdue ant aggression through the presence in their cuticle of 
several long-chained aldehydes not seen in larvae (Mizuno et al. 2018).

DNO and TNO secretions contain amino acids and carbohydrates and have been 
studied in about ten species (Cushman et  al. 1994; Daniels et  al. 2005; DeVries 
1988b; Pierce and Nash 1999; Pierce et al. 2002; Wada et al. 2001). Secretions of 
obligate or steadily ant-attended larvae have a higher nutritive content than those of 
less myrmecophilous species (Daniels et al. 2005).

Aphid mimicry may be one way that facultatively attended larvae attract ants. 
Melezitose is an aphid gut compound that serves as an attractant for aphid-attending 
ant workers and is a major component of the nectary secretions in Polyommatus 
icarus and Zizeeria knysna [Polyommatini], one of the few  well-studied species 
whose caterpillars are weakly attended (Daniels et  al. 2005; Depa et  al. 2020; 
Detrain et al. 2010; Vantaux et al. 2011).

Hojo et al. (2015) determined that the facultatively ant-attended Japanese lycae-
nid Arhopala (=Narathura) japonica produces DNO secretions that manipulate the 
dopaminergic pathway in the brains of their attendant ants, workers of Pristomyrmex 
punctatus. Reduced levels of dopamine are correlated with a reduction in worker 
activity levels (thereby increasing their fidelity to the caterpillar) and heightening 
aggression toward intruders. Specialized cuticular hydrocarbons (CHCs) of 
A. japonica act as a signal to host ants that they learn to associate with reward after 
attending larvae (Hojo et al. 2014a).

The parasitic species Niphanda fusca has larvae that secrete primarily only tre-
halose and glycine for host Camponotus japonicus ants (Hojo et al. 2008; Wada 
et al. 2001). Glycine alone is ignored by ants at low concentrations but acts as a 
manipulative “umami” taste enhancer substance when added to trehalose, increas-
ing host ant interest in this specific sugar (Hojo et al. 2008; Wada et al. 2001). The 
relative simplicity of this “umami” mechanism for taste enhancement (i.e., the cou-
pling of an amino acid or small peptide with a sugar reward) makes it an attractive 
candidate for further research into how and why lycaenid caterpillars can be so 
extremely attractive to their associated ants. However, these same taste preferences 
are not shared by the closely related Camponotus obscuripes, indicating that lycae-
nid secretion components may be specialized to individual ant species (Hojo 
et al. 2008).

By comparing the foraging behavior of colonies of the attendant ant species, 
Iridomyrmex mayri, fed on high-protein, high-carbohydrate, or mixed diets, Pohl 
et al. (2016) showed experimentally that the nutritional state of the attendant ant 
colony influenced the number of attendant workers foraging on larval secretions 
from the Australian lycaenid, Jalmenus evagoras (Fig. 21). Workers from colonies 
fed on either carbohydrate- or protein-restricted diets were inconsistent in their 
compensatory behavior. Those on low-carbohydrate diets compensated by foraging 
more on sugars, but those on low-protein diets did not show compensatory behavior 
by foraging more on amino acids. However, workers from colonies that were diet 
restricted were significantly more interested in foraging on secretions from the lar-
vae than those from well-fed colonies. Workers were not strongly attracted to the 
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Fig. 21 Jalmenus 
evagoras larval 
aggregation (Theclinae: 
Zesiini) in Victoria, 
Australia. (Photo by Ron 
I. Greer)

amino acid serine, which had been thought to be the primary amino acid in Jalmenus 
evagoras larval secretions (Pierce 1984) nor did they show an “umami” response 
when serine was coupled with sugar. More recent analysis suggests that glutamine 
rather than serine is the primary amino acid in J. evagoras larval secretions (Zemeitat 
2017), and further work will be necessary to explore the relationship between larval 
secretions and ant attendance. The chemical composition of liquid secretions pro-
duced by different species of ant-attended larvae varies depending on the species 
and seems likely to be shaped at least in part by the feeding preferences of the ants 
that attend each caterpillar species (Daniels et al. 2005; Pierce 1984).

Certain obligate lycaenid-ant associations may provide sufficient fitness benefits 
to both partners under some conditions to warrant being classified as mutualists 
(Cushman et al. 1994; Fiedler and Maschwitz 1988; Fiedler et al. 1996). For exam-
ple, caterpillar secretions from the Australian Jalmenus evagoras confer a net ben-
efit in terms of positive growth rates (potentially resulting in a greater production of 
alates) for colonies of its most common ant associate, Iridomyrmex mayri (Pierce 
et al. 1987).

However, even associations with larvae of Jalmenus evagoras may sometimes be 
detrimental to ants. Under experimental conditions, small ant colonies grew faster 
when allowed to collect secretions from Jalmenus evagoras larvae, but colonies 
provided with only one larva grew significantly faster than colonies given access to 
five larvae, although this may have been because larvae were allowed to aggregate 
on the host plants (Nash 1990; Pierce and Nash 1999). Subsequent experiments 
showed that once small groups of workers and brood passed below a minimum ratio 
of workers to brood, workers would consistently chose to tend J. evagoras larvae 
and neglect their own brood, allowing them to perish (Merrill 1997; Pierce and 
Nash 1999). As has been demonstrated for symbioses more generally, whether the 
relationship is mutualistic or parasitic varies spatially and temporally and is influ-
enced by a number of factors (Madeiros et al. 2018; Thompson 2005; Warren et al. 
2019). In the case of caterpillar-ant interactions, this context dependency can 
include the size of the ant colony, the availability of alternative resources, the num-
ber of caterpillars, and the relative cost of their defense.

The Natural History of Caterpillar-Ant Associations



360

In certain contexts, manipulation can stabilize mutualisms (Heil et  al. 2014; 
Sachs 2006). However, the manipulation and asymmetry seen in typical lycaenid- 
ant associations suggest that despite their superficial similarity to honeydew- 
secreting insects such as aphids, the majority of phytophagous lycaenids might best 
be viewed as only rarely mutualistically associated with ants and more often mildly 
parasitic upon them. This association could also help to explain why lycaenids are 
unusually prone to shifts to overt parasitism and obligate aphytophagy (Sachs and 
Simms 2006). A number of different ant species are obligately dependent upon 
associated plants, fungi, and even hemipterans, but it is perhaps significant that none 
are known to be obligately associated with caterpillars (Chomicki and Renner 2015; 
Eastwood and Fraser 1999; Ivens 2015).

Because many non-trophobiotic and trophobiotic caterpillars associate with the 
same species of ants, the primary advantage for trophobiotic caterpillars seems to be 
that they can attract ants with additional food rewards, not simply that they are able 
to appease them. There are many reasons why myrmecophilous lycaenids may uti-
lize ants for defense rather than relying on toxic secondary compounds or other 
means of caterpillar protection. Different circumstances in combination with factors 
such as larval size or feeding activity can influence predation risk for non- 
myrmecophilous caterpillars (Berger et  al. 2006; Bernays 1997; Dmitriew 2011; 
Gotthard 2000; Mänd et al. 2007). Selection will favor conditional ant association 
for protection if maintaining an ant guard is both possible and metabolically less 
expensive than other means of defense (see discussion below) (Mizuno et al. 2019; 
Wagner 1993). Different attending ant species can confer significantly different lev-
els of protection (Fraser et al. 2001), but predation or parasitism rates are typically 
many-fold higher in the absence of ants, both for facultative and obligate ant associ-
ates (Atsatt 1981a; Forister et  al. 2017; Kaminski et  al. 2010a; Rodrigues et  al. 
2010; Peterson 1993; Pierce and Easteal 1986; Pierce and Mead 1981; Thomas et al. 
2020; Weeks 2003). For example, the obligately ant-associated juveniles of the 
Australian lycaenid, Jalmenus evagoras, suffered nearly 100% mortality from para-
sites and predators when ants were experimentally removed (Pierce et al. 1987), and 
even the facultatively attended larvae of the North American lycaenid, Glaucopsyche 
lygdamus, were shown experimentally in one field season to suffer up to a 12-fold 
difference in mortality without ants (Pierce and Easteal 1986).

Highly specialized parasitoids and predators may seek out myrmecophilous cat-
erpillars by using chemical or vibrational cues from their associated ants to locate 
their prey (e.g., Dejean et al. 2016; DeVries 1991b; Elgar et al. 2016; Fiedler et al. 
1992; Pierce and Nash 1999; Thomas and Elmes 1993; Thomas et al. 2002). In situ-
ations like this where specialized enemies use attendant ants to find their prey, selec-
tion might favor the loss of ant association. Ant associations in plants and insects are 
prone to frequent loss or modification, and Lepidoptera are no exception (Chomicki 
and Renner 2015; Sachs and Simms 2006; Stadler and Dixon 2005; Weber and 
Keeler 2013; Yao 2014). For example, several Australian species in the obligately 
ant-associated lycaenid genus Hypochrysops have likely either lost ant association 
(Hypochrysops byzos, H. pythias) or become facultatively associated with them 
(H. polycletus) (Braby 2000). In another Australian genus, Ogyris, while most 
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species have caterpillars that are never found without ants, often with only a single 
genus or species, the clade containing Ogyris amaryllis, O. oroetes, O. olane, and 
O. barnardi has lost or greatly reduced facultative ant associations (Eastwood and 
Fraser 1999; Schmidt and Rice 2002). The Taraka-Spalgis-Feniseca clade 
(Lycaenidae: Miletinae) and several genus-groups of Poritiinae represent other 
cases where phylogenetic studies will probably reveal extensive secondary loss of 
obligate ant associations. Ant associations appear lost most frequently in faculta-
tively ant-associated groups of the Theclinae-Polyommatinae assemblage, a pattern 
also observed in facultative associations more generally (Chomicki et al. 2020).

Like many classic symbioses, ant-caterpillar associations typically have addi-
tional hidden partners. Hemipteran-ant mutualisms often benefit host plants 
(Campbell et al. 2013; Pringle et al. 2011; Styrsky and Eubanks 2007), and host 
plants may similarly benefit when lycaenid and riodinid caterpillars attract ants that 
drive away other herbivores and deposit nutrients, as recently documented for 
Euchrysops cnejus caterpillars attended by Camponotus ants on Vigna plants in 
India (Ekka et al. 2020).

 Abiotic Effects, Obligate Associations, and Biogeography

One of the more significant insights gained in recent years from a worldwide con-
sideration of the drivers of interspecies symbiosis (e.g., Kaspari 2020; Steidinger 
et al. 2019) is the importance of abiotic factors in determining the distribution of 
species interactions such as those seen between caterpillars and ants. Pierce (1987) 
pointed out a striking pattern in the biogeographic distribution of lycaenid-ant inter-
actions: obligate interactions are considerably more common in the Southern 
Hemisphere, particularly Australia and Southern Africa, compared to those in the 
Northern Hemisphere, including the Nearctic and Palearctic. These patterns appear 
to extend into wet tropical Africa and Southeast Asia, where life histories of 
Lycaenidae are comparatively less well-documented. All but one tribe of lycaends 
has representatives in both hemispheres, and thus this pattern cannot be explained 
by a single vicariance event involving ant-associated and non-associated lineages. 
Rather, it is due to a heterogenous distribution of tribes with different levels of ant 
association, with Poritiinae, Aphnaeinae, Miletinae, and strongly ant-associated 
genera of Theclinae-Polyommatinae generally limited to the Afrotropical, Oriental, 
and Australasian regions. In the same way, ant-associated Riodinidae and other 
Lepidoptera are almost entirely limited to the Neotropical, Afrotropical, Oriental, 
and Australasian regions (Table 1).

Two nonexclusive explanations for this pattern include (1) climate differences 
and (2) bottom-up effects of soil micronutrients and precipitation that affect plants, 
microbes, and species that interact with them (e.g., Steidinger et  al. 2019). For 
example, the phosphorus-poor soils of southern Africa and Australia have been 
evoked as potentially playing a role in the high percentage of ant-dispersed myrme-
cochorous plants in these areas (Westoby et al. 1982). Research has accumulated 
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over the past 25 years in what Kaspari has called “ionic ecology” (Kaspari 2020), 
demonstrating the importance of the stoichiometry of essential elements like Na, P, 
Cl, K, Mg, and Ca that flux across membranes of organisms at different tro-
phic levels.

Functional mechanisms involving different species are complex and undoubt-
edly vary depending upon the circumstances, but numerous experiments at a variety 
of spatial scales focusing on invertebrates ranging from termites (with a rich gut 
microbiome) to caterpillars (largely devoid of a gut microbiome) have shown that 
levels of accessible environmental sodium either from direct access through soil or 
“mud puddles” or indirectly through plant tissues consumed by herbivores can have 
an enormous effect not only on the abundance and distribution of invertebrates but 
also on the entire network of parasites and predators interacting with them (Baker 
et al. 2020; Kaspari 2020). The significance of these results in considering caterpillar- 
ant interactions seems especially clear given the trophobiotic nature of most of their 
associations. Coping mechanisms are required in habitats with soils that are poor in 
phosphorus: an essential, rare, and limited nutrient needed for ribosomes, ATP, and 
nucleic acids. For insects with gut microbiota, movement into the cell can be facili-
tated by bacteria with surface proteins that can cotransport Na-P across membranes 
(Werner and Kinne 2001). This means that sodium can be at a premium for organ-
isms with microbial associations like ants because of its role in facilitating cotrans-
port of phosphates into cells of their symbionts (Kaspari 2020). A growing body of 
research has shown that the availability of sodium and phosphorus can place con-
straints on ant growth (Bujan et al. 2016; Goitía and Jaffé 2009; Kaspari et al. 2008, 
2009, 2020). Any mechanism that could enhance sodium acquisition and/or facili-
tate sodium ion transport might be especially favored in regions where soils have 
low phosphorus or sodium.

For plants, this could be achieved through extrafloral or floral nectars or through 
seeds with attractive eliasomes. For caterpillars, this could perhaps be achieved with 
secretions and could explain the appearance of obligate, intense ant associations in 
arid habitats with low phosphorus soils such as those found in central Australia and 
Southern Africa. The same ability to attract and manipulate ant partners would not 
exist in habitats with well-fertilized soils because ants might not be limited by 
essential micronutrients in the same way. This difference in soil fertility could also 
help to explain in part why ant plants are restricted to the tropics. For example, 
although the genus Macaranga is widely distributed in the Old World tropics, the 
clade containing ant plants occurs in West Melanesian rainforest, a region also char-
acterized by phosphorus-poor soils (Davies et al. 2001). Similarly, natural variation 
as well as experimental manipulations in nutrient exposure of obligately associated 
ant plants ranging from Cordia and Cecropia in the Neotropics to Macaranga and 
Vachellia in the Old World tropics have resulted in differences in plant growth rates 
and turnover of ant inhabitants (Folgarait and Davidson 1995; Heil et  al. 2001; 
Pringle et al. 2013).

Aridification has played an additional role in affecting ant associations, both by 
driving caterpillars to seek shelter and possibly food in ant nests (Espeland et al. in 
review) and by generating extremes in the distribution of soil micronutrients over a 
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large spatial scale (Bui et al. 2014). It seems no coincidence that relatively high 
levels of ant association are observed in caterpillar-ant interactions in Australia, 
Southern Africa, and the Cerrado of Brazil.

Finally, differences in soil composition across large spatial scales may have also 
played a more important role in shaping ant association across landscapes of the 
Southern Hemisphere including Australia and Southern Africa because weathering 
and erosion processes have taken place in the absence of the kind of severe, cyclical 
history of glaciation observed in the Northern Hemisphere (Hopper 2009). This 
explanation has the advantage of accounting for different levels of obligate associa-
tion in similar temperate climates of the Western Palearctic (Fiedler 1998b) versus 
in Australia (Pierce 1987).

Experimental evidence suggests that seasonal temperature fluctuations can break 
up established partnerships by disrupting ant ecological partitioning. Ant territorial-
ism on caterpillar host plants seems to facilitate obligate ant-caterpillar association, 
as exemplified by species of aggressive, tropical, arboreal Oecophylla and 
Crematogaster found with diverse specialized Lepidoptera. Ecologically dominant 
ant species typically have the most abundant and aggressive workers, and their large 
colonies create stable, high-quality habitats for myrmecophiles (Eastwood and 
Fraser 1999; Fiedler 1991; Fiedler 2001; Fiedler 2006; Hölldobler and Wilson 
1990). The combined suitability of a host plant to feed on and enemy free space 
afforded by the ability to appease otherwise threatening ants can create “ecological 
islands” of opportunity for obligately specialized myrmecophilous Lepidoptera, 
and this can have strong effects on their subsequent diversity through restriction of 
population size and/or structuring of populations (Eastwood et al. 2006; Pellissier 
et al. 2012; Pierce et al. 2002; Schär et al. 2018). This helps explain why New World 
Eciton and Old World Dorylus army ant species, although the former have the most 
diverse myrmecophile communities known, do not have caterpillar associates—
their lepidopteran interactions are restricted to a few species of Papilionidae, 
Hesperiidae, and Nymphalidae whose adults use ant columns to find nitrogen-rich 
bird droppings (Ivens et al. 2016; Kistner 1982; Rettenmeyer et al. 2011). The for-
aging strategies of army ants afford little opportunity for caterpillars, which are rela-
tively sedentary and typically herbivores, to form stable associations (Pierce 1995; 
Powell et al. 1998). Ant partners in temperate regions might also be less desirable 
due to the various documented effects of climate on colony traits and community 
structure (Dunn et al. 2010; Dunn et al. 2009; Kaspari and Vargo 1995; Kaspari 
et al. 2000).

Besides making suitable ant partners difficult to find, climate fluctuations in tem-
perate areas might increase caterpillar developmental times and reduce access to 
nutritious host plants (Fiedler 2006; Pellissier et al. 2012a). These hypotheses are 
supported by the observation that obligate ant associates in temperate areas gener-
ally spend most of their life cycle within ant nests, where nutritious food sources, 
favorable microclimates, and attendant ants are always available (Fiedler 2006). 
Caterpillar life histories are generally more specialized and diverse in the tropics 
(Dyer et al. 2007; Forister et al. 2015). Further studies are needed to elucidate the 
underlying ecological causes.
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Fig. 22 Geographical distribution of ant associations in Lycaenidae. Known and inferred lycaenid 
life histories reported in Table 2, or the lack thereof, were cross-referenced with regional catalogs 
in (Braby 2000; Ek-Amnuay 2012; van Gasse 2013; Hardy and Lawrence 2017; Lamas et al. 2004; 
Opler 1992, 1999; Parsons 1999; Seki et  al. 1991; Tshikolovets 2011; Williams 1995-2020). 
Facultative associates are often more widely distributed than obligate associates, and they may 
comprise an increasingly large fraction of total species when looking at small, disturbed, or iso-
lated regions

Whether based on climate, soils, the availability of required ants, or other factors, 
only non-myrmecophilous or flexible, facultative ant associates in the families 
Lycaenidae and Riodinidae are found extensively beyond the Old World and New 
World southern zoogeographic regions (Fig.  22). The Lycaenidae are thought to 
have originated in the Old World tropics, where extant phylogenetic diversity 
remains heavily concentrated (Espeland et  al. 2018). Only five lycaenid groups 
occur substantially beyond the Old World tropics and subtropics into the Palearctic, 
and all five have also entered the New World through Beringia or across the Atlantic 
(Fric et al. 2019; Gompert et al. 2008; Vila et al. 2011): the Spalgis-Taraka-Feniseca 
clade [Miletinae], the subfamily Lycaeninae, and the tribes Theclini, Eumaeini, and 
Polyommatini of the Theclinae-Polyommatinae assemblage. Except for a handful 
of obligately associated species of Polyommatini found within otherwise faculta-
tively associated genus groups, species in these groups are all largely facultatively 
ant-associated or not ant-associated (Table 2, Fig. 23). The Riodinidae have diversi-
fied primarily in the Neotropics. A single lineage within the subfamily Nemeobiinae 
has colonized the Old World, most likely via Beringia, with a secondary return to 
the Neotropics of the genera Styx and Corrachia (Espeland et al. 2015). None of the 
over 300 species in this subfamily are known to be ant-associated (Table 2). It is 
tempting to conclude that strongly ant-associated butterflies have been unable to 
disperse between the Old World and the New World due to the challenge of finding 
suitable ant partners, especially when confronted with climatic conditions found in 
temperate regions.

Obligate myrmecophiles’ double reliance on associated ants and food sources 
may make them especially sensitive to disturbance and vulnerable to extinction 
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Fig. 23 Phylogenetic tree of extant Lycaenidae and Riodinidae based on data from Espeland et al. 
(Espeland et al. 2018), showing (a) distribution of species with larval ant association overall, (b) 
distribution of facultative larval ant associations, and (c) distribution of obligate larval ant associa-
tions (from data summarized in Table 2). The size of each circle is proportional to the number of 
species represented. Percentages correspond to the number of records known or inferred from 
congeners divided by the total number of species, with groups where life history information such 
as degree of obligacy is unavailable scored as 0%. Tribes that were rendered non-monophyletic 
appear multiple times in the tree (e.g., the Polyommatini). We have illustrated the same species 
counts and ant association proportions next to each appearance as current phylogenies do not allow 
us to break down these data further. (Figure prepared by João Tonini)

(Chomicki et al. 2020; Geyle et al. 2021; Koh et al. 2004; Pierce 1995; Pierce et al. 
2002). Invasive ant species, habitat disturbance and destruction, and climate change 
are particular concerns (e.g., Braby et al. 2021; Geyle et al. 2021). Over 60% of the 
threatened Lycaenidae and Riodinidae on the IUCN Red List are recorded as obli-
gate ant associates or predicted to be obligate ant associates based on congeners 
(Table 2) (IUCN 2020). Among the obligately ant-associated species, those that are 
“aphytophagous,” having at least one life stage obligately dependent on animal 
rather than plant tissue for nutrition, are particularly vulnerable. Species of 
Lepidoptera with this rare life history trait comprise only 400 species at most, rep-
resenting only about 0.25% of the estimated 160,000 species (Pierce 1995). 
However, aphytophagous species are greatly overrepresented on the IUCN Red List 
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of Threatened Species of butterflies, appearing almost two orders of magnitude 
more likely to be included in the categories of “Extinct,” “Critically Endangered,” 
and “Endangered” than are herbivorous species (IUCN 2020). Most obligate ant 
associations remain poorly studied. Moreover, countless groups of ant- associated 
caterpillars likely remain undiscovered, as nearly two-thirds of currently known 
myrmecophile groups are known from only a single species, almost entirely in the 
tropics (Table  1). Surprising and unique forms of ant association continue to be 
described regularly (e.g., Agassiz and Kallies 2018; Dejean et al. 2017; Komatsu 
and Itino 2014; Ramos et al. 2018; Rocha et al. 2020). Future experiments will need 
to measure the abundance and distribution of myrmecophiles in different regions 
and habitats to let us estimate their true global diversity, document their often- 
unbelievable biology, and ensure their future.
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