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A high-throughput multispectral imaging system
for museum specimens
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Lawrence F. Gall 7, Gary D. Bernard 8, Edward R. Soucy 9, Nanfang Yu3 & Naomi E. Pierce 1,2✉

We present an economical imaging system with integrated hardware and software to capture

multispectral images of Lepidoptera with high efficiency. This method facilitates the com-

parison of colors and shapes among species at fine and broad taxonomic scales and may be

adapted for other insect orders with greater three-dimensionality. Our system can image

both the dorsal and ventral sides of pinned specimens. Together with our processing pipeline,

the descriptive data can be used to systematically investigate multispectral colors and shapes

based on full-wing reconstruction and a universally applicable ground plan that objectively

quantifies wing patterns for species with different wing shapes (including tails) and venation

systems. Basic morphological measurements, such as body length, thorax width, and antenna

size are automatically generated. This system can increase exponentially the amount and

quality of trait data extracted from museum specimens.
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Nanostructures in insect cuticles have inspired many novel
engineering designs1–5. Since insects are known to be able
to perceive wavelengths beyond the visible spectrum,

important data can be missed unless the imaging systems used to
survey insect cuticles are able to detect a full range of potentially
relevant electromagnetic wavelengths. Current studies of lepi-
dopteran (butterfly and moth) wing color (which in this paper we
use as a shorthand for reflectance, agnostic of any visual system)
and shape are often limited to less than 100 specimens3,6 due to
time-intensive single specimen-based procedures7–9 such as the
need to detach the wings from the specimens2,4,10 or arrange and
image individual specimens with their labels. Designing systems
that accommodate wing shape diversity9,11 has also presented a
serious challenge.

The Lepidoptera provide an ideal imaging target since the two-
dimensional nature of pinned specimens of most butterflies and
many moths make them more tractable for analysis. Suitable
methods are needed that can process multispectral images of
Lepidoptera objectively, systematically, and efficiently. The main
challenges are two-fold: (1) development of a high-throughput
imaging system, and (2) identification of a universally applicable
ground plan or archetype that can be generalized to capture wing
characteristics across families.

Conventionally, the multispectral properties of the surface of
an object can be measured in two ways12–15. A hyperspectral
spectrophotometer provides high spectral resolution (~0.1 nm)
for a single point, while multispectral imaging can quickly create
two-dimensional images with high spatial resolution at some cost
to spectral resolution by dividing the spectrum into multiple
wavelength bands of ~100–200 nm each (hereafter referred to as
“bands”) and taking photo-like measurements over a large area
using a camera. Some state-of-the-art imaging systems have 10-20
times finer spectral resolution (~5–10 nm), yet cost 70 times more
than our apparatus (~$350,000). In remote sensing, satellites use
multispectral imaging to collect data efficiently across large areas
worldwide (e.g., Advanced very-high-resolution radiometer
[AVHRR] and moderate resolution imaging spectroradiometer
[MODIS]). Similarly, commercial multispectral cameras can
provide objective multispectral measurements on two-
dimensional surfaces, but those equipped with high spatial reso-
lution are prohibitively expensive for most individual labs or
museum collections and have relatively slow imaging efficiency,
complicating their use in high-throughput specimen imaging. We
therefore developed a scalable, high-throughput imaging system
based on a modified consumer DSLR camera that can accom-
modate a Cornell style museum specimen drawer (450 × 390 ×
67 mm) and is capable of collecting multispectral data from large
numbers of biological specimens at once.

Another crucial component for comparing a taxonomically
diverse set of insects is the use of an appropriate analytical
framework that is robust to a range of morphologies. To date,
the most common approach for comparing wing shapes and
color patterns in Lepidoptera has been based largely on wing
venation9,16,17, which is highly correlated with both the evo-
lutionary history and the physiological development of the
species being studied. In his landmark study, Frederick Nijhout
described a “general ground plan” to analyze pattern develop-
ment in Nymphalidae and other butterflies based on variation
in venation pattern and other morphological characteristics,
guided by a relatively small set of developmental rules18. More
recent evolutionary developmental approaches have turned
away from analyzing shape and morphology per se and focused
instead on identifying master regulatory genes (e.g., optix,
cortex Wnt A) associated with wing color patterning, as well as
the multiple cis-regulatory elements that enhance their
effects4,10,19–21.

While these advances have furthered our understanding of the
developmental underpinnings of wing color patterns, they have
not addressed the practical problem of how to make robust
comparisons of widely variable wing morphologies. For example,
the number of wing veins varies between different butterfly
families16,22, so it is not possible to employ a single venation
system across butterflies. Wing shape also varies between species,
with many Lycaenidae distinguished by hindwing tails that are
not found in close relatives23,24. As a result, most studies of cross-
family wing morphology have been carried out on forewings only,
using wing metrics that affect flight, such as aspect ratio and
moment of area25,26. For multispectral colors and patterns, many
tools are available27–29, but their application is largely limited to
single clades sharing similar wing venation2,9,28 or shape7,28.

Biological museums preserve the wealth of the world’s biolo-
gical specimens, yet studies of wing color patterns to date have
commonly focused on non-museum specimens because such
research requires intact fore- and hindwings2,4,10. Additionally,
imaging methods for these studies often require disarticulating
specimens, limiting their utility for future research. Our imaging
system overcomes some of these difficulties by non-destructively
imaging whole pinned specimens across a customizable range of
wavelength bands, and automatically processing them with an
analytical framework that is robust to diverse morphologies
across the Lepidoptera, including variable tail and wing shapes.

Results
The two-dimensional nature of many pinned Lepidoptera speci-
mens allows us to omit some technical considerations, such as the
variable incident angles that need to be carefully considered when
imaging 3D objects, and our multi-spectral imaging rig with its
custom designed platform can image both the dorsal and ventral
sides of specimens (Figs. 1a, 2 and 3). The initial descriptive data
can be used for general multispectral property exploration and
museum specimen digitization (Fig. 1b); the processed data, which
are built on the initial descriptive data, can be used to investigate
multispectral colors. After fore- and hindwing reconstruction
(Fig. 1c), the design of the universally applicable analytical
framework (Figs. 1d and 4a) can objectively quantify wing tails and
accommodate different wing shapes and venation systems (Figs. 1e
and 4b). The framework can also be applied to systematically
survey multispectral color patterns (Figs. 1g, h and 5) while
providing basic morphological measurements (Fig. 1f).

The imaging system design. Our high-throughput multispectral
imaging system represents a compromise between the speed of
traditional imaging and the need for objective spectral data. The
system consists of a high-resolution SLR camera (Nikon D800)
with its internal UV-IR filter removed to allow for UV–visible-IR
imaging, fitted with a 28–80 mm f/3.3–5.6 G Autofocus Nikkor
Zoom Lens (Methods). The customized imaging platform was
designed to accommodate both ends of a pin, so mounted
specimens can be positioned on the platform either dorsally or
ventrally (Methods; Fig. 2). A reference bar containing black and
white standard references and a scale bar is attached to the
imaging platform in each round of imaging by a hook-and-loop
fastener (Methods; Fig. 6a). The rough cost excluding the com-
putational cost is ~$4500 (Supplementary Information).

For each set of specimens, a series of seven images (hereafter
referred to as “drawer images”; Fig. 3a) are taken in raw format
(*NEF) over the course of two minutes. These seven drawer
images correspond to the following spectral imaging ranges (with
details about light settings included in Methods): UV-only
(λ= 360 nm; reflected light filtered through a Hoya U-340 UV-
pass filter on the camera; combined UV reflectance and unfiltered
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Fig. 1 Summary of high-throughput, multi-faceted imaging methods. The workflow runs from top to bottom, and the main features are
highlighted. a An exemplar image showing the high throughput capacity of our imaging system. b Multispectral images (upper two rows) can be
summarized as false color images (lower row) by principal component analysis, where red corresponds to PC1, green to PC2, and blue to PC3. c Full wing
shape can be virtually reconstructed using information from dorsal and ventral segmentation. d A universal coordinate system for each wing can be
generated automatically based on four landmarks (labeled as red dots). e Summarized wing shapes of two groups of butterflies: Lycaenidae on the left-
hand side and Papilionidae and Nymphalidae on the right-hand side. Tail probabilities (Tail Prob.), curviness (Curv.), and the standard error of tail curvature
(S.E. of Tail Curv.) are color coded accordingly. f Body and antennal morphologies can be measured automatically during image processing. g The summary
of reflectance of four exemplar spectral bands (RGB and UV) from three specimens are shown. h Variation in UV reflectance of a group of butterflies is
summarized as ‘UV signal,’ which represents the average contrasts of UV reflectance. Blue indicates low signal, and red indicates high.
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visible fluorescence (called UVF hereafter) comprised of both
reflected UV and all UV-induced visible fluorescence; two near-
IR bands (unfiltered reflected light from λ= 740 nm [NIR] and
940 nm [fNIR] LEDs); and three in the visible (reflected
broadband white LED light, λ= 400–700 nm, one unfiltered
RGB and two RGB images filtered by linear polarizers at
orthogonal angles to detect polarization along that axis), which
are later decomposed into red, green and blue channels. Up to
thirty-five pinned specimens can be imaged simultaneously,
depending on their sizes, with wing sides facing either dorsally or
ventrally.

Drawer image processing. All raw (multispectral) drawer images
are uploaded to a high-performance computing environment,
where we have developed a pipeline to process images auto-
matically. However, a small number of images (<5) can be pro-
cessed on a desktop with reasonable resources and longer runtime
(Methods). To preserve the color gradient of the specimens,
images are first converted into linearized 16-bit TIFF format30 by
dcraw31 (an open-source program for handling raw image for-
mats). These 16-bit TIFF images are then analyzed using
MATLAB scripts. A set of seven drawer images is considered one
computing unit, and the same group of specimens in the dorsal
unit has a corresponding ventral unit (Methods).

Each computing unit (Fig. 3a) is read into memory, and the
standard black and white references are recognized on the white
(regular RGB) image by their circular shapes (Fig. 3b). Rather
than calculating the exact number of absorbing photons at each
sensor13,27, we employ the remote sensing technique32 of
converting all pixel values into reflectance (albedo) units (between
0 and 1) according to the black and white reference standards
(Methods; Fig. 3c). The scale on the drawer image is recognized
automatically by local feature-matching to a reference image of
the same scale, and the number of pixels per centimeter is derived
(Methods; Fig. 3b).

Specimen pinning variability and optical aberration of the
camera lens system would introduce measurement error during
the imaging process. We estimate this error range in length
measurement to be less than 0.4% (or 0.16 mm of a 4 cm butterfly
(Methods; Fig. 7). Even though the error is minute, we leave a
clear 5 cm margin around the edges of the stage when specimens
are imaged in order to avoid relatively high aberration in the
vicinity of the image boundaries (Fig. 7d).

Post-processing is applied to the UV, NIR (740 nm), fNIR
(940 nm), and UVF bands to account for the differential sensor

sensitivity to these wavelengths in the red, green, and blue
channels (Methods; Fig. 3c), except for the RGB-white band,
which does not require post-processing. An index of polarization
is calculated as the absolute difference between the two
orthogonally polarized RGB white images. This single measure
of polarization can also provide an indication of the occurrence of
structure-induced colorations, suggesting whether additional
studies should be carried out to investigate polarization at other
viewing or incident light angles33.

Extracting specimen images from drawer images. Our pre-
liminary observations showed that Lepidoptera have the highest
contrast with the background in the fNIR (940 nm) band, so we
exploited this property to help recognize and extract individual
specimen images from drawer images. (Methods; Fig. 3d). Each
specimen’s multi-band images were aligned into a layered image
stack (Fig. 8a, b) based on affine geometric transformations, such
as translation, rotation, scale, and shear. This step is relatively
time-consuming, and processing time roughly scales with speci-
men size. At this stage, the registered multi-band specimen image
stack, our initial descriptive data, can either be archived as part of
a specimen’s extended data or further transformed by our pipe-
line into higher-level processed data that produce shape, color
and pattern trait data. For convenience, we included an additional
binary mask layer with the information needed for background
removal (Methods).

The completed initial descriptive data contain registered multi-
band images (including UV, blue, green, red, NIR, fNIR,
fluorescence [RGB], and polarization [RGB]), a background
removal mask, and the scale bar) (Fig. 3a and 8a, b). Although
further analysis is required to extract specific trait data from these
datasets, they can be powerful visual aids in the discovery of novel
wing scale types and structures. For example, the orange patches
at the forewing tips of Hebomoia glaucippe (L.) show strong UV
reflectance14,15 (Figs. 3c and 8c), but the orange patches on
Chrysoritis pyramus (Pennington) do not, suggesting a difference
in the underlying physical mechanism producing these colors.
Similarly, the white background on Hebomoia glaucippe shows
little UV reflectance14, but the white patches on Arhopala wildei
Miskin (and many other species with white patches) show
significant UV reflectance. (Fig. 8c). With a suitable converter,
these initial descriptive data can be used in software packages27,29

for analyses that take into account a range of animal visual
systems. There is immense potential for discovery of multispectral

Fig. 2 The design of the imaging platform accommodating both dorsal and ventral sides of specimens. a The hidden pre-cut slots are illustrated in blue.
White dashed lines, indicating the region that shows up in the image, were labeled by black sewn lines on the imaging platform for user guidance. The scale
bar and black/white standard references are in the lower left corner. Details of the multi-layer foam backing can be found in Fig. 6. b The examples showing
how dorsal and ventral sides of specimens being placed on the imaging platform.
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phenomena currently hidden within museum collections over the
world for centuries by using these initial descriptive data alone.

A series of more complex analytical pipelines were designed to
further quantify multispectral reflectance and shape traits.
Following a detailed segmentation of different body parts, custom
“tail quantification” and “wing-grid coordinate” pipelines are
applied to record information about tails, wing shape, and multi-
band reflectance traits.

Body-part segmentation. Our initial descriptive data include an
overall specimen outline, but in order to segment this outline into
different body parts, key landmarks are identified based on
conventional geometry, including but not limited to mathemati-
cally searching the topology of the specimen outline (labeled as
crosses and circles in Fig. 9b). We include two segmentation

methods. Basic segmentation (fully automated segmentation of
specimen shapes according to landmarks with straight lines) can
be used in the absence of data from the more time intensive
manual fore- and hindwing segmentation. The manually defined
fore- and hindwing segmentation pipeline is semi-automated,
with human input through a stand-alone software package
adapted from a GitHub repository named “moth-graphcut”32,
and the segmentations derived from it are more natural-looking
(Fig. 9c). Basic segmentation is highly efficient, requiring no
human input, but less accurate (inspection and correction are
discussed later). In contrast, manual fore- and hindwing seg-
mentation provides high accuracy of natural wing shape and full-
wing reconstruction, with a throughput of approximately
100 specimen images processed per hour. In both methods, fur-
ther morphological information, such as body size, body length,
thorax width, antennal length, antennal width, and antennal
curviness, are also automatically measured and collected along
with the body-part segmentation (Methods; Fig. 1f).

Once specimens are segmented into body parts, the multi-
spectral reflectance of each body part can be summarized
(Fig. 9d). In addition to the analyses that can be done at the
individual level with the initial descriptive data, more detailed
comparisons can be made between the dorsal and ventral sides of
different body parts. For example, by analyzing the reflectance of
17 specimens from 7 different families, we can observe that the
dorsal hindwing shows significantly higher UV reflectance than
its ventral side (Fig. 9e), possibly to assist in signaling, whereas
the ventral side of the body and forewings shows higher fNIR
reflectance than the dorsal side (Fig. 9e), possibly to assist in
thermoregulation. However, additional processing is needed to
produce coherent trait data within individual body parts that are
comparable among more distantly related taxa.

Universally applicable wing coordinates. To compare multi-
spectral wing traits across different wing shapes, we developed a
generalizable pipeline consisting of four main components
(Fig. 4): (1) complete wing shape reconstruction, (2) secondary
landmark identification, (3) wing grid generation, and (4)
hindwing tail summary. This system overcomes the particular
difficulty of accounting for and quantifying diverse hindwing
tails, and the processed data generated from this pipeline can also
be directly applied in shape analyses.

In Lepidoptera and many other winged insects, a region of the
hindwing often overlaps a portion of the forewing, complicating
automated shape reconstruction. In our imaging paradigm, a
specimen’s hindwing is overlapped by the forewing in the dorsal-
side image, and the forewing is overlapped by the hindwing in the
ventral-side image (Fig. 4a). In our algorithm, the manually
defined fore-hindwing boundaries are used to reconstruct the
missing hindwing edge at the dorsal side and the incomplete
forewing edge at the ventral side of a specimen. After
reconstructing a complete wing, secondary landmarks are
identified automatically (Fig. 1d and 4a). Tails on the hindwings
are computationally separated from wing bodies before further
processing (details about tail analyses can be found in Methods).
A set of wing grids is then created according to the secondary
landmarks of each wing (Fig. 1d and 4a). This grid system, which
divides a specimen’s silhouette according to the centroid of a set
of four corners, is robust to the shape differences between
different species, even for distantly related Lepidoptera (e.g.,
Sphingidae and Lycaenidae; Fig. 4b). Furthermore, the majority of
these grids remain steady even in the presence of moderate wing
damage (IV & VIII in Fig. 4b). The default resolution of these
matrices is 32 × 32, but it can also be adjusted to accommodate
specimens with larger wing areas.

Fig. 3 Imaging processing pipeline for each unit (a set of seven drawer
images). a A set of seven raw images in NEF format; b Automatic
recognition of the scale bar and standard white and black references;
c Reflectance calibration according to the standard white and black
references; d Individual specimen images are extracted by red
bounding boxes.
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The quantification of hindwing tails and wing shapes also relies
on this gridded system (Methods; Figs. 1e and 4c), and can be
applied across the Lepidoptera (Fig.1e), without need for a priori
identification of the presence or absence of tails. In contrast to
other packages28, our wing grid pipeline allows comparisons of
diverse wing shapes, especially hindwings, with differing venation
systems and tails (Fig. 4b). The even number of gridded anchors
(e.g., 128 points in a 32 × 32 grid system) on the silhouette of a
wing can be used as “landmarks” for shape comparison in other
applications9,11,34 (Fig. 4b). It can also be used to summarize
multispectral wing patterns.

Based on this wing grid system, the average reflectance and
variation of each grid can be calculated (Figs. 1g and 5a), and the
results of a wing analysis can be stored in a 32 × 32 by N matrix
(where N is the number of wavelength bands). The 32 ×32
resolution was determined by the size of the small specimens we
handled; for example, it becomes meaningless to summarize data
for a wing with 50 × 50 pixels using a finer resolution (e.g.,
64 × 64). This standard format facilitates further statistical
analyses among a wide variety of lepidopteran groups with
different wing shapes.

The results of wing-patterning analyses can be further
projected onto an average wing shape of a group for more
intuitive interpretation (Figs. 1h and 5b). For example, the mean
average reflectance identifies generally brighter wing regions
(Fig. 5b) for RGB bands. High UV contrast regions appear to be
important in UV intraspecific signaling35, and we find that such
regions are more likely to be seen on the dorsal side of
Lycaenidae, but on the ventral side of Papilionidae (Fig. 5c, d).
We can also compare the variability in the location of these high
UV variable regions for a given group of taxa to show where they
are highly conserved (low values) versus where they are more
labile (high values; Fig. 5e, f). Such conserved regions indicate
that UV variation (which could be involved in signaling) in that

wing region (whether present or not) is highly constrained and
therefore stable across different species. Although these are
examples chosen to illustrate a wide variety of wing shapes rather
than targeting a specific scientific question, they already begin to
provide biological insights for further study, demonstrating the
utility of carrying out systematic studies of lepidopteran traits
using this approach.

Inspection, manual correction, and visualization. Given the
relatively large file sizes (~240Mb per image) and time intensive
post-processing pipelines, most of our protocols are designed to
be run in high-performance computing environments (i.e., clus-
ters); however, inspecting and manually correcting the images are
inconvenient in such environments. We therefore designed the
pipeline to enable a small proportion of the dataset to be
downloaded to a local machine for inspection and manual cor-
rection. In total, our pipeline has five potential points where
inspection and manual correction are possible (Methods). At each
inspection point, we also developed corresponding scripts and
user interfaces to manually correct the dataset on local machines
with minimal resource requirements (low storage, memory, and
CPU requirement). Scripts for customized visualization settings
were also developed for wing shape (including tails) and wing
patterns (Methods, Supplementary Information, and Data
availability).

Discussion
This system allows researchers to efficiently produce and archive
high-quality and informative multispectral images of museum
specimens. Having applied it to more than 10,000 specimens to
date, we have found that a Cornell drawer of specimens (~60–80
individuals) can be imaged in 2 hours given our current work-
flow. This estimate includes specimen handling, retrieval, and re-

Fig. 4 Diagram illustrating the full wing reconstruction, universal wing grids, and tail quantification. a Full wing shape can be virtually reconstructed
according to dorsal and ventral segmentation. a, b Wing grids can then be generated after c Defining the tail regions. In the left panel, the red boundary
represents the reconstructed rough shape of a hindwing based on the top five harmonics after being projected into the frequency domain by elliptical
Fourier analysis. b Universal wing grids can accommodate distorted or broken wings (e.g., IV & VIII). I. Smerinthus cerisyi (Sphingidae); II. Catocala
connubialis (Erebidae); III. Evenus coronata (Lycaenidae); IV. Heliconius melpomene (Nymphalidae); V. Allancastria cerisyi (Papilionidae); VI. Atrophaneura
hector (Papilionidae); VII. Kallima inachus (Nymphalidae); VIII. Corades medeba (Nymphalidae).
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integration into the collections, although the imaging time typi-
cally scales inversely with the size of the specimens. Digitizing
museum collections has become a mission of institutions
worldwide, with vast numbers of specimens processed in the past
decades36,37. These digitalized records were applied for scientific
and social purposes with support from governments and citizens
through different curating systems and platforms, such as
GBIF (http://www.gbif.org), iDigBio (http://www.idigbio.org),
MCZBase (https://mcz.harvard.edu/database), Atlas of Living
Australia (http://www.ala.org.au/), Map of life (https://mol.org/),
and ButterflyNet (http://www.butterflynet.org/). Imaging systems
and pipelines, ranging from 2D traditional photography37 to 3D
CT-scan38,39 and 3D photogrammetry39,40 with or without con-
venient user interfaces, have also seen vast improvements, often
with correspondingly vast prices. Our multispectral imaging
system provides an important step forward for those interested in

high-throughput spectral phenotyping or digitization of speci-
mens in a cost-effective manner, which we hope to continue to
adapt as the field of archive digitization matures.

We anticipate a number of potential improvements to the cur-
rent system. On the hardware end, incorporating a rotational plane
into our current imaging platform will allow researchers to study
reflectance at different incident angles33, which we initially did not
include due to the two-dimensional nature of most lepidopteran
specimens. Wings that have been detached from the body of an
insect cannot be accommodated by our current pipeline, so the
development of an imaging platform to mount individual wings will
also enlarge the potential utility of this system.

On the software end, efficiency would be greatly improved by
reducing the need for manual input41. For example, with suffi-
ciently large numbers of previously processed images as a training
set, an automatically inspecting and self-correcting system can be

Fig. 5 Reflectance summary from exemplar bands according to wing grids. a Summarized gridded reflectances in blue, green, and red bands can be
b Projected onto the average wing shapes of a selected group of specimens. c, d UV signal (the average UV contrast among species) showing the most
common likely highly UV variable regions on the wings. e, f Variation of UV variable regions between species, indicating regions of UV patterning that are
highly conserved (blue) versus those that are more actively changing (red).
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developed based on machine learning. A similar approach could be
applied in the case of fore-hindwing segmentation. The utility of
this imaging protocol in large-scale morphological studies of Lepi-
doptera will be further advanced if more detailed body part seg-
mentation (e.g., eyes, legs, and proboscis) could also be developed.

The current version supports only those specimens with heads
positioned toward the top of an image. An automatic rotational
correction could help orient specimens for optimal downstream
processing. The user interface could also be improved, as the cur-
rent design requires back-and-forth communication between a
computing cluster and the user’s local machine. A unified user
interface could help to simplify operation of the complex protocols.

To connect the results of the image analyses described here with
existing knowledge in the fields of evolution and developmental
biology, integration of the data with evolutionary insights from wing
venation systems seems essential. The wing grid system provides
universally applicable coordinates for shape and reflectance com-
parison across diverse lepidopteran taxa. By registering wing vena-
tion systems on these wing grids, the relationships between venation,
multispectral reflectance, and shapes can be further explored.

Museum collections are vast repositories of biological infor-
mation of both basic and applied value, simply waiting to be
mined. The relatively inexpensive and user-friendly imaging
hardware and wing grid processing software presented here will
enable museum researchers to explore with high efficiency the
multispectral properties of not only Lepidoptera but also many
other insect groups. It will also facilitate the comparison of colors
and shapes among species with highly diverse wing shapes, in
contrast to other available packages for the study of colors and
patterns. These methods can be easily adapted to study other
similarly two-dimensional subjects, such as the leaves of plants or
cultured microorganisms. Our methods have the potential to
revolutionize the efficiency and accessibility of collecting reflec-
tance and shape data for biological specimens, providing a rich

source of information for bio-innovation from collections
worldwide.

Methods
The imaging system design. The system consists of a high-resolution SLR camera
(Nikon D800), fitted with a 28–80 mm f/3.3–5.6 G Autofocus Nikkor Zoom Lens.
The camera is mounted inside a rectangular light box constructed of 0.125″ thick
6061 Aluminum sheeting (McMaster-Carr: 89015K18), mounted on T-slotted
aluminum framing extrusion (McMaster-Carr: 47065T101), which is 36 inches tall,
and 24 inches wide and deep, and open at the bottom. Inside the light box, 4 banks
of LED emitters are mounted 18 inches high on the sides, on thick aluminum heat
sinks which can be rotated up and down to provide direct or indirect illumination.
Each bank of LEDs is composed of 4 star metal-core-printed-circuit-boards
(MCPCBs, OSRAM Opto Semiconductors Inc.), one for each wavelength band, and
each with 6 individual LEDs. The four wavelength bands are ultraviolet (UV
365 nm: LZ1-30UV00-0000), white (Cool white: LZ1-10CW02-0065), 740 nm IR
(740 nm Red: LZ4-40R308-0000), and 940 nm IR (940 nm Red: LZ1-10R702-0000).
The camera is screw-mounted to a monopod (Sinvitron Q-555) attached to a piece
of framing extrusion extending through the middle of the light box, with the lens
held 28.25 inches from the bottom. A motorized filter wheel with four slots is
mounted directly underneath the lens, with an empty slot for unfiltered RGB white,
UVF, NIR, and fNIR imaging, a Hoya U-340 UV pass filter for UV-only images,
and two B+W KSM circular polarizers mounted at orthogonal angles, for dif-
ferential white polarized imaging.

A microcontroller (PJRC, Teensy++ 2.0) and stepper driver (Sparkfun, ROB-
12779) control a motor (Mercury Motor, SM- 42BYG011-25) that rotates a
bespoke filter wheel referenced to an origin home switch. LEDs are driven by banks
of current controllers (LEDdynamics, 3021-D-I-100) with a microcontroller
coordinating illumination timing (PJRC, Teensy 3.2). The camera is controlled by
the open-source DigiCamControl software (DigiCamControl V2.0.0).
Coordination of camera operation, LED illumination, filter wheel positioning and
image transfer is done by a desktop computer running a custom LabView
program42. All software and hardware designs are available upon request.

To minimize background reflectance, the material used in building the platform
was carefully chosen and tested for spectral neutrality from the ultraviolet through
the near-infrared bands (Fig. 1a and 6). We included a series of pre-cut slots in the
underlying multi-layer foam backing so that pinned specimens could be easily
pushed in and held by either the top or the tip of the pin, to enable efficient dorsal
and ventral imaging (Fig. 2b). A reference bar containing black (spectralon 2%
reflectance AS-001160-960, Labsphere) and white (spectralon 99% reflectance AS-

Fig. 6 The design of the imaging platform. a Reference bar and b Corresponding materials. c Imaging platform with the hidden pre-cut slots shown in blue
and d Corresponding materials. (1) Black (spectralon black standard AS-001160-960, Labsphere) and white (spectralon white standard AS-001160-060,
Labsphere) standard references; (2) Hook loop strips with adhesive (2.4″ × 2.4″); (3) Adhesive forensic evidence labels (2 cm measure; A-6243); (4)
Adhesive tear resistant waterproof photo craft paper; (5) Neoprene sponge black foam pads with adhesive (12″ × 8″ × 1/4″); (6) Black cotton thread; (7)
Canvas stretcher bar kit (16″ × 20″); (8) Neoprene sponge black rubber foam with adhesive (12″ × 8″ × 1/8″); (9) Neoprene foam anti vibration pads with
adhesive (6″ × 6″ × 1/4″); (10) Polyethylene foam (18″ × 16″ × 1.5″). Detailed information can be found in Supplementary Information.
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Fig. 7 Empirically measured lens-induced measurement distortion. a Illustration of scale standards placed at different heights on pins. b View of the
image taken by the imaging system. c, d Frequency distribution c and spatial distribution d of size anomalies in absolute percentage compared to a 4 cm
butterfly. e, f The raw value for d & e is provided. The dashed line in c & e indicates median and zero, respectively. The region bounded by the red dashed
line in d, f are where we place our specimens for imaging.
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001160-060, Labsphere) standard references in contrasting background colors and
a scale is attached (Fig. 6). We tested the system using Lepidoptera specimens from
the Museum of Comparative Zoology Entomology Collection. The imaging surface
of each specimen was adjusted to approximately the same height as the standard
reference bar.

Drawer image processing. A set of seven drawer images is considered one
computing unit, and the same group of specimens in the dorsal unit has a cor-
responding ventral unit. Each unit is independently processed such that all units
can be processed in parallel on the cluster. The resources allotted for each job/unit
are set to two cores with twenty-four-gigabyte memory for twelve hours. Most
images can be processed fully within six hours, but larger specimens (e.g., Papi-
lionidae, Nymphalidae, and Saturniidae) take longer. Here, multiple approaches
were chosen to maximize the degree of automation for highly varied specimen
conditions, increasing the image processing time from minutes to hours. While
simple algorithms may be efficient, they are not generalizable. Under faster but
more simplistic conditions, the number of outliers that would need to be manually
handled would increase, ultimately consuming more time and human labor than
that spent on computation in a high-throughput situation.

For each unit, a set of seven drawer images (Fig. 3a) is processed after the
standard black and white references are recognized (Fig. 3b). The reflectance of a
circular patch at the center of each standard can be extracted for all bands
(avoiding the margins, which can become more easily distorted or contaminated
accidentally as a byproduct of frequent imaging) (Fig. 3b). By comparing the
imaged pixel intensity with the known reflectance values of the standards for
calibration, we can rescale and calibrate all pixels in the image13,30 (Fig. 3c) with
the reflectances of the standard references provided by the vendor (Supplementary
Information). Values can differ slightly from one standard to another, so they each

need to be measured independently to provide an initial baseline. The scale on the
drawer image can be recognized automatically by local feature-matching with a
given reference image of the same scale. Feature points from the two images (the
reference and the drawer image) can be extracted, and the matching points
identified by the speeded up robust features (SURF) descriptor43, which is an
advanced version of the scale-invariant feature transform (SIFT)44. Further
conventional image processing procedures (e.g., erosion, dilation, and object
filtering) are then applied to the detected scale in order to derive the number of
pixels represented in one centimeter (Fig. 3b).

The post-processing of each of the remaining bands is as follows: due to the
non-overlapping mosaic design of RGB Bayer filters, there are more green than red
and blue light receptors in consumer SLR cameras13,30,45. Under low RGB light
environments, the signals received by green sensors are thus more likely to be used
to estimate the missing color values, which compensates for insufficient signals
detected in red and blue sensors. This phenomenon was manifested in our UV
images, so the green channel was excluded whenever a UV image was calibrated.
For NIR (740 nm), which is not far from the detected spectral range of a camera’s
blue sensors, the blue channel was not included in deriving the NIR (740 nm)
product, because the camera’s blue sensors may still be able to detect minute NIR
signals and thus introduce noise. In contrast, fNIR (940 nm) is more distant from
the detection of blue sensors, so the normal RGB calibration was applied. For the
fluorescence in all RGB channels, we calculated the reflectance difference between
UVF and UV images (UVF deducts UV). We did not avoid the green channel of
the UV images in this case, or we would not have obtained reasonable intensity
values for green fluorescence. The fluorescence quantified by our approach should
only be compared with objects measured using a similar approach. Since
fluorescence and some wavelength bands (e.g. UV and polarization) are typically
dim compared with other wavelengths, the images shown in this paper have been
adjusted for better human visibility.

Fig. 8 The data structure of the initial descriptive data, with preliminary multispectral insights. a The multi-layer format (“cell format”, the technical
term used in MATLAB) is applied to contain the descriptive data for a single side of a specimen. b The appearance of some exemplar layers for the South
African lycaenid, Chrysoritis pyramus. The actual output layer order can be found in the Supplementary Information. c Variation in scale properties affecting
UV reflectance can be found within a single specimen of Hebomoia glaucippe, compared here with C. pyramus on the left and A. wildei on the right.
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Validation of size measured in the system. We use conventional lenses in our
imaging system for cost-efficiency and user friendliness, but such lenses are prone
to spatial and optical distortions, usually towards the boundaries of the image. In
order to quantify the magnitude of these distortions on the measurements taken by
our imaging system, thirty scale bars were pinned at different heights (to simulate
extreme variability in pinning height) and spread on the imaging platform (Fig. 7a,
b). Different pinned heights were included for each column and row, although this
resulted in the scale-bars at the four corners all being near the top of the pin. The
RGB image (Fig. 7b) was then analyzed in the image processing pipeline. For each
scale bar, the location on the imaging platform and the average number of pixels
indicating one centimeter were recorded.

Excising specimen images from drawer images. Given that our approach was
designed to accommodate the high diversity in Lepidoptera, specimens with diverse
wing shapes can be imaged together (Fig. 3). The rough position of each specimen
is determined according to the fNIR image, and a rectangular bounding box is
generated with the inclusion of buffer zones on all four edges (1/5 specimen height

to the top; 1/15 height to the bottom; 1/20 width to the left and right boundaries).
Specimens are cropped according to the corresponding bounding boxes (Fig. 3d),
and difficult targets (e.g., legs and antennae, and stains formed by fallen scales) on
the imaging platform are automatically filtered out by the cropping algorithm. This
function may accidentally remove tiny specimens, so the threshold value is
designed to be specified manually according to the minimal specimen size to be
imaged on the imaging platform. Efforts to automate this step were not feasible. If
the filtering procedure is automated, small specimens will be automatically filtered
out as a non-specimen object when large and small specimens are imaged together.
For example, the size of a fallen papilionid body part can be as large as the size of a
small lycaenid with one missing wing, and we would want to filter out the former
but retain the latter.

Background removal, where a specimen is selectively cropped from the image
background, is part of the segmentation process and involves many steps, so only
the broad outline of the procedure is provided here. Since the intensity of
reflectance differs from one species to another, a consensus approach based on
three segmentation techniques was used to handle the diverse range of Lepidoptera:
k-means clustering28,46, Gaussian filtering29,47, and active contouring48,49. The

Fig. 9 Details of body part segmentation with preliminary observations. a Background removal based on fNIR image. b With primary landmarks
(represented by crosses and circles) and vectors identifying the symmetrical axes (represented by segments in the solid red line and the blue dashed line),
the specimen mask can be automatically segmented cWith or without manually defined fore-hindwing division of the overlap region. The species shown in
(a–c) is Oxylides faunus. d Statistical summary (mean, variation, and patch size) of all bands for both sides (dorsal and ventral) of all body parts (four wings
and the body) can be calculated. e Statistical results of exemplar bands based on 17 specimens from 7 different families. Center line represents median; box
limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. Statistically significant levels of difference between dorsal and ventral
sides (under two-tailed t-test) are labeled by asterisks: *, 0.05; **. 0.01.
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K-means clustering technique divides a false-color RGB image composed of one
NIR and two fNIR bands, into five clusters (k= 5). The background color and
location are then identified, and the remaining regions are labeled as the specimen.
The Gaussian filter technique uses a Gaussian filter on the entire image to smooth
out relatively minor variations within a specimen while maintaining high contrast
between the boundaries of a specimen and the background, facilitating
conventional segmentation techniques. The active contouring technique (a.k.a.
Snakes) was also applied to find an objective outline of a specimen by growing
iteratively from the initial specified region towards object boundaries (Fig. 9a).

Antennae and abdomens sometimes require additional attention during the
segmentation stage, particularly when they overlap or touch other body parts being
segmented. Legs extending out from under the abdomen can interfere with
accurate hindwing cropping. Using simple image erosion (deduction with some
basic logic), antennae touching the leading edge of the forewing are preserved as
much as possible without damaging the forewing shape. However, legs that
intersect other body parts are automatically removed to preserve hindwing shapes.
In rare cases, rectangle bounding masks were generated as placeholder masks when
the specimen could not be excised from the background in one piece or when
serious errors occurred in the process of forming specimen masks. Detailed
examples and descriptions can be found in the Supplementary Information.

Specimen barcodes were used as the file name for a set of specimen images
(dorsal and ventral sides). A dataset (in csv format) containing the information of
all image names and imaged specimens, which can be generated manually, was
required at the image processing stage (find Protocol in Supplementary
Information); otherwise, temporary barcodes (e.g., “Tmp-1” and “Tmp-2”) were
automatically assigned to name a set of specimen images.

Further morphological information. Information regarding body size, body
length, and thorax width are measured after the virtual removal of the four wings
(Fig. 1f). For an antenna, a series of measurements were developed (Fig. 1f): the
length of a path tracked along a curved antennal mask corresponds to antennal
length; the average width of an antenna can be derived from the mask area of an
antenna divided by its length; and antennal curviness is calculated as antennal
length divided by the direct linear distance between its tip and base. The size of an
antennal bulb can also be obtained from the width of the tip of an antenna. These
morphologies were also quantified for a broken antenna, so in the application of
antennal traits, one should carefully filter out the data of broken antenna manually
or systematically. To reasonably compare this trait among different individuals, we
suggest using the ratio between the size of antennal bulb and the overall antennal
width as the meaningful comparable quantification.

Tail quantification. A general erosion of N pixels (which is scaled by the size of the
specimen algorithmically; a high-frequency value is 5 in our imaged specimens)
was first applied to remove tiny silhouette features created by hairs and attach-
ments (e.g., crystalized chemicals and large dust grains). The outline of the spe-
cimen mask is then projected into the frequency domain by elliptical Fourier
analysis50, and the top five harmonics are used to reconstruct the rough shape of a
hindwing. The areas extended from these reconstructed wing regions are defined as
tails (Fig. 4c). The morphology (length and curvature) of those independent areas
can be further quantified and recorded according to the wing grid system (Fig. 4c).

Inspection, manual correction, and visualization. In total, our pipeline has
five potential points when inspection and manual correction are possible: (1)
the bounding box; (2) the specimen mask; (3) the segmentation of fore- and
hindwings; (4) the identification of primary landmarks; and (5) the application
of wing grids. The module that generates images for inspection is embedded in
the image-processing pipeline, so these images can be easily found in the
specified result directories. Most manual correction tools for the local computer
have been written in MATLAB, except for the specimen mask correction which
requires commercial painting software (such as Adobe Photoshop) and the fore-
and hindwing segmentation task (written in Python). Corresponding scripts have
also been prepared to update the dataset on the cluster with the manually corrected
information.

The advanced visualization system. Many visualizations are automatically gen-
erated within the image processing pipeline. However, some species have special
wing size and shapes, so more customized settings may be required for better
visualization. A script developed for customized wing shape and tail visualization is
also provided (Supplementary Information).

Data structure. The data structures of the initial descriptive data as well as the
processed data and the group summary matrix are provided in Supplementary
Information.

Statistics and reproducibility. By following the pipeline with the raw data pro-
vided in the Supplementary Information, all intermediate and final products are
readily reproducible. The figures and figure legends give the sample sizes, number
of specimens and species, as well as the applied statistical approach.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated and/or analyzed during the current study are available at DryAd
(https://doi.org/10.5061/dryad.37pvmcvp5)51.

Code availability
Detailed step-by-step instructions are documented on Protocols.io with tutorial videos
for some crucial steps. All source codes are provided at GitHub. Please
find Supplementary Information for details.
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