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Abstract.—Taxa are frequently labeled incertae sedis when their placement is debated at ranks above the species level, such
as their subgeneric, generic, or subtribal placement. This is a pervasive problem in groups with complex systematics due to
difficulties in identifying suitable synapomorphies. In this study, we propose combining DNA barcodes with a multilocus
backbone phylogeny in order to assign taxa to genus or other higher-level categories. This sampling strategy generates
molecular matrices containing large amounts of missing data that are not distributed randomly: barcodes are sampled
for all representatives, and additional markers are sampled only for a small percentage. We investigate the effects of the
degree and randomness of missing data on phylogenetic accuracy using simulations for up to 100 markers in 1000-tips trees,
as well as a real case: the subtribe Polyommatina (Lepidoptera: Lycaenidae), a large group including numerous species
with unresolved taxonomy. Our simulation tests show that when a strategic and representative selection of species for
higher-level categories has been made for multigene sequencing (approximately one per simulated genus), the addition
of this multigene backbone DNA data for as few as 5-10% of the specimens in the total data set can produce high-quality
phylogenies, comparable to those resulting from 100% multigene sampling. In contrast, trees based exclusively on barcodes
performed poorly. This approach was applied to a 1365-specimen data set of Polyommatina (including ca. 80% of described
species), with nearly 8% of representative species included in the multigene backbone and the remaining 92% included
only by mitochondrial COI barcodes, a phylogeny was generated that highlighted potential misplacements, unrecognized
major clades, and placement for incertae sedis taxa. We use this information to make systematic rearrangements within
Polyommatina, and to describe two new genera. Finally, we propose a systematic workflow to assess higher-level taxonomy
in hyperdiverse groups. This research identifies an additional, enhanced value of DNA barcodes for improvements in
higher-level systematics using large data sets. [Birabiro; DNA barcoding; incertae sedis; Kipepeo; Lycaenidae; missing data;

phylogenomic; phylogeny; Polyommatina; supermatrix; systematics; taxonomy]

The impact of missing data in modern phylogenetics
is highly debated. It is well accepted that phylogenetic
accuracy improves with a greater sampling of taxa and
more informative characters. In practice, possible
detrimental effects of imbalanced sampling for
phylogenetic inference are often circumvented by
excluding taxa and/or genes when the former have
problematic placements or the latter have been poorly
sampled. However, increasing evidence suggests that
inclusion of incomplete taxa (that have not been
sequenced for all markers) or incomplete markers (that
have not been sequenced for all taxa) may increase
phylogenetic accuracy, or at worst be inconsequential
provided that a sufficient number of informative
characters are sampled overall (Wiens 2003; Philippe
et al. 2004; Wiens 2006; de Queiroz and Gatesy 2007;
Wiens and Morrill 2011; Wiens and Tiu 2012; Roure et al.
2013; Grievink et al. 2013; Jiang et al. 2014). According
to this view, complete matrices are not essential for
optimal phylogenetic performance, and incomplete taxa
can still be placed correctly. Nevertheless, this approach
is not without controversy (Lemmon et al. 2009; but see
Wiens and Morrill 2011; Simmons 2012a, 2012b).

Given that comprehensive data sets in terms of both
taxa and characters are hard to obtain, especially for

hyperdiverse taxon groups, two strategies are commonly
used to explore biodiversity: 1) sampling multiple loci
(in the hundreds in the case of phylogenomics) for
representatives of higher-level taxonomic categories
(the “phylogenetic/-omic approach”), which explores
deeper relationships but potentially misses recent
diversification; or 2) sampling only one or two loci, such
as the mitochondrial COI DNA barcode, for as many
taxa as possible, and trying to cover the entire group’s
biodiversity at the possible expense of accurate inference
of deep relationships (the “barcoding approach”). These
approaches are analogous to the “bottom up” (many
characters, few taxa) and “top down” (many taxa, few
characters) analyses described by Wiens (2005). Option
1) should facilitate resolving higher-level relationships.
However, while phylogenetic accuracy is improved by
the addition of informative characters, this approach can
sometimes create model violations if it fails to detect
multiple substitutions due to long branches (Poe 2003;
Wiens 2005). In addition, other potential issues such
as gene tree discordance and “the anomaly zone” may
also challenge phylogenetic accuracy (Jeffroy et al. 2006;
Degnan and Rosenberg 2006; Galtier and Daubin 2008;
Mendes and Hahn 2018). Option 2) has the benefit of
breaking long branches and thus improves the detection
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Distribution of missing data in molecular matrices. a) A complete matrix, where no missing data are involved (referred as the

backbone data set). b) A single-gene matrix, including only one molecular marker and therefore providing information about only one gene
history (referred as the barcode data set). c) The combined matrix, the product of merging a backbone and a barcode data set, where one marker
(DNA-barcode) is present for all specimens, but other markers are entirely sampled only for a reduced percentage of specimens that have been
selected by prioritizing representatives of higher-level taxonomic categories. d) A combined matrix, where the selection of fully sequenced
specimens, and therefore the distribution of missing data, is randomly sampled (usually as a result of merging data sets from various sources).

of multiple substitutions, but the smaller number of
informative characters, as well as the linkage of those
characters in a single mitochondrial gene region, may
result in weakly supported phylogenetic hypotheses
(DeSalle et al. 2005). Moreover, the resulting single-gene
phylogenetic histories are likely to not reflect the species
trees (Pamilo and Nei 1988; Maddison 1997; Nichols 2001;
Degnan and Rosenberg 2006). The debate regarding the
costs and benefits of sampling more taxa on the one hand
or more characters on the other has a long history and
is still unresolved (GrayBeal 1998; Rannala et al. 1998;
Zwickl and Hillis 2002; Poe 2003; Rosenberg and Kumar
2001; Wiens and Morrill 2011; Philippe et al. 2011; Wiens
and Tiu 2012; Zheng and Wiens 2016).

In theory, sampling many loci for many taxa would
be the best solution, but this remains a costly option
for many, often due to the difficulty of obtaining
samples with well-preserved DNA. In practice, most
phylogeneticists have to cope with the problem of
missing data or imbalanced sets of sequences in the
attempt to build large phylogenies by merging multiple
data sets. The availability of public molecular data
increases exponentially, but these data are remarkably
heterogeneous. Heterogeneity comes from the varied
sampling strategies followed in different studies, from
uneven sequencing of various genetic markers and/or
from sampling biases involving particular clades or
genes.

A number of studies have attempted to evaluate the
performance of patchy supermatrices in phylogenetics
(Wiens et al. 2005; de Queiroz and Gatesy 2007; Cho
et al. 2011; Kawahara et al. 2011; Roure et al. 2013;
Hovmoller et al. 2013; Streicher et al. 2015; Philippe
et al. 2017). Patchy supermatrices may differ not only
in their completeness but also in their randomness,
a rarely assessed but possibly important parameter.
Randomness in matrix patchiness can vary in both
dimensions: taxon or marker. Previous studies tested
scenarios with maximum randomness: probabilities of
representation are equal for all taxa and characters
(i.e., all taxa may equally have 1,2,3... to the maximum
number of markers). It is still unclear whether partial
matrices with guided missing data (those where only
a set of selected samples are fully represented by all
genes; see Fig. 1) can benefit phylogenetic accuracy.
We here test the effects of missing data on partial
matrices where some taxa have a maximum number
of markers and some have only one and always
the same one, the standard COI mitochondrial DNA
barcode. We also test the relevance of the selected taxa
having the maximum number of markers by using a
random strategy versus a taxonomically guided strategy
that prioritizes having at least one representative per
higher-level clade (genus in this case). The motivating
question is to evaluate whether partial matrices can be
strategically designed by combining multiple genes for
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relatively few representative taxa (the phylogenetic/-
omic approach) to resolve higher-level relationships,
with barcode data from many taxa mostly informing
species-level or shallow relationships (the barcoding
approach).

We analyze different scenarios through simulation
experiments and use this approach to assess a
challenging empirical data set, the Polyommatina
butterflies. The subtribe Polyommatina (Lycaenidae,
Polyommatinae) is a species-rich group (ca. 480 species)
that is the product of one or more radiations (Kandul
et al. 2004; Wiemers et al. 2010; Vila et al. 2011;
Talavera et al. 2013a; Talavera et al. 2015, Stradomsky
2016). Butterflies in this group are morphologically
highly similar and their taxonomy has been unstable.
Species diversity in the Polyommatina has been
classified with 82 formally described generic names
in a wide array of taxonomic combinations. Prior
to this work, we addressed a higher-level taxonomic
revision after reconstructing the first comprehensive
molecular phylogeny of the group, based on three
mitochondrial genes plus six nuclear markers (Talavera
et al. 2013a). This data set included 109 specimens
representing nearly all genera and subgenera described
within the subtribe. The resulting phylogeny uncovered
several polyphyletic genera. We develop objective
criteria for a systematic arrangement that could best
accommodate pre-existing generic nomenclature to the
new phylogenetic framework, and, after applying a
flexible temporal scheme, we delimited 32 genera.

The controversial taxonomy of this group mirrors
the high evolutionary lability of most morphological
characters. It’s possible that the group contains cryptic
diversity, and that taxa not characterized genetically
so far might be assigned to the wrong genus. In
fact, a remarkable number of species in this group
have been assigned to multiple genera by different
authors. For example, the North American taxon acmon
Westwood, [1851] (originally described as Lycaena acmon)
has been placed in the genera Plebejus (Pelham 2008),
Aricia (Balint and Johnson 1997), and Icaricia (Layberry
et al. 1998, Talavera et al. 2013a). The enigmatic and
morphologically distinct taxon avinovi Stshetkin 1980
has been placed in the genera Polyommatus (Balint and
Johnson 1997), Rimisia (Zhdanki 2004; Eckweiler and
Bozano 2016) and Afarsia (Shapoval and Lukhtanov
2016). This situation is not unique to the Polyommatina
but extends to many other insect groups where rare
or morphologically similar taxa provide challenging
taxonomic assignments due to difficulties in finding
diagnostic synapomorphies.

In this study, we increase taxon sampling for the
Polyommatina to 1360 specimens, comprising about 80%
of putative species. We combine DNA barcodes with
the genus-level phylogenetic backbone in a supermatrix
where specimens having only COI barcodes (658 bp)
represent ca. 92% of the total matrix, and specimens with
multiple markers (6666 bp) represent ca. 8%. With this
approach, we aim to screen the phylogenetic diversity of
the group, assign species or subspecific taxa to genera,

identify unrecognized major clades and re-evaluate the
phylogenetic history of the group with a nearly complete
taxon sampling.

We also design a battery of simulations to evaluate
phylogenetic accuracy for partial matrices, with
particular emphasis on testing whether strategic
selections of fully sequenced representatives improve
accuracy over random selections. Our simulations test
two scenarios: 1) a phylogenetic data set resembling
our empirical data and 2) a phylogenomic data set
(sampling 100 genes per taxon) to test the possible effect
of backbone-barcode imbalances in large-scale studies.
We propose a systematic workflow to assess higher-level
taxonomy in hyperdiverse groups. In so doing, we also
reinforce the value of the COI DNA barcode in higher
systematics when combined with a minimal, but a
well-designed, multilocus framework.

MATERIALS AND METHODS

Empirical Molecular Data Sets

We gathered molecular data for as many taxa as
possible within the Polyommatina butterflies (genera,
subgenera, species, and subspecies), sampling as many
populations as possible within the distribution range of
each taxon (Supplementary Table S1 available on Dryad
at http://dx.doi.org/10.5061/dryad.mOcfxpp0d). Our
phylogenetic approach involved building two different
molecular data sets. First, we took advantage of
a multilocus matrix assembled for an earlier study
(Talavera et al. 2013a), that included a mitochondrial
DNA fragment containing three gene regions, plus six
nuclear markers (6666 bp, hereafter referred to as the
backbone data set, Fig. 1a). This data set included 109
specimens with at least one representative of each of
the 82 formally described genera in Polyommatina (with
the exception of Xinjiangia Huang and Murayama 1988
and Grumiana Zhdanki 2004). The markers included in
the backbone data set were mitochondrial cytochrome
oxidase 1 (COI), leucine transfer RNA (leu-tRNA) and
cytochrome oxidase II (COII), and nuclear elongation
factor-1 alpha (EF-1a), 28S ribosome unit (28S), histone
H3 (H3), wingless (wg)—carbamoyl-phosphate synthetase
2/aspartate transcarbamylase/dihydroorotase (CAD) and
internal transcribed spacer 2 (ITS2).

A second data set (hereafter referred to as the barcode
data set, Fig. 1b) was generated by assembling a
single-gene matrix (658 bp) for the universal barcode
fragment of mitochondrial COI This data set exemplifies
a molecular matrix with a one-gene phylogenetic
history, often involving a limited number of informative
characters. A total of 1365 barcodes were retrieved
from multiple sources: 109 from the backbone data
set, 1100 from the public repositories GenBank and
BOLD, and 156 from specimens collected in the field
or obtained from collections and sequenced specifically
for this research. New collection efforts specifically
targeted taxa and populations that are difficult to
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obtain and/or are not sampled in previous studies
(collection data in Supplementary Table S1 available on
Dryad). The barcode data set included representatives
of approximately 80% of the roughly 480 species of
Polyommatina currently recognized (Balint and Johnson
1997; Talavera et al. 2013a). Both backbone and barcode
data sets included as outgroup taxa four representatives
for the sister subtribe Everina and one for Leptotina
based on Talavera et al. (2013a). All specimens used in
this study are listed in Supplementary Table S1 available
on Dryad.

Based on unexpected taxonomic placements or
divergences observed from preliminary phylogenetic
inspections of the barcode data set, we increased
sequencing coverage by sequencing multiple markers
for four additional taxa (Chilades kedonga, Chilades
elicola, Kretania psyorita, and Neolysandra corona)
(Supplementary Table S1 available on Dryad), thus
increasing the backbone data set to 113 specimens.

A matrix merging barcode and backbone data sets
(hereafter referred to as the “combined” data set) was
also built for downstream analyses. This consisted of
a matrix of 1365 specimens, where approximately 8%
(113 specimens) were completely sequenced for all
markers, and 92% (1252 specimens) were represented
by COI barcodes uniquely. In this asymmetric matrix
of characters only one leading marker is complete,
and the presence/missing data of other markers is
intentionally guided towards particular taxa (Fig. 1c).
This model contrasts with that of a partial matrix where
the presence/missing data of other markers is randomly
distributed across taxa (Fig. 1d).

DNA extraction, amplification, and sequencing for
both barcode and backbone data sets followed standard
protocols used for Lycaenidae (Vila et al. 2011; Talavera
et al. 2013a). Newly sequenced specimens are stored
in the DNA and Tissues Collection of the Institut
de Biologia Evolutiva (CSIC-UPF) in Barcelona and
the sequences obtained were submitted to GenBank
(Supplementary Table S1 available on Dryad).

Phylogenetics and Divergence Times (Empirical Data Set)

Both barcode and backbone data sets were realigned
based on available matrices from Talavera et al. (2013a),
using Geneious 10.0.3. The barcode matrix consisted of
1365 sequences of 658 bp. The final backbone matrix
consisted of 113 tips and 6672 bp: 2172 bp of COI + leu-
tRNA + COII, 1171 bp of EF-1a, 745 bp of CAD, 811 bp of
28S,370bp of Wg, 1075 bp of ITS2, and 328 bp of H3. Three
data sets, backbone alone, barcode alone, and backbone
and barcode combined, were used for phylogenetics.

Bayesian inference was used to simultaneously infer
evolutionary relationships and divergence times with
the software BEAST 1.8.0 (Drummond et al. 2012). Data
in the backbone and combined data sets were partitioned
by six markers, considering COI + leu-tRNA + COII a
single evolutionary unit in the mitochondrial genome.
Models for DNA substitution for each marker were
chosen according to the Akaike information criterion in

JModeltest (Guindon and Gascuel 2003; Darriba et al.
2012). As a result, the HKY model was used for H3,
the TN model for CAD, and a GTR model for the rest
of the markers, in all cases with a gamma distribution
(+G) and a proportion of invariants (+I) to account for
heterogeneity in evolutionary rates among sites. The
gamma distribution was estimated automatically from
the data using six rate categories. Normally distributed
tmrca priors including maximum and minimum ages
within the 95% HPD distribution were established on
four well-supported nodes according to Talavera et al.
(2013a). The uncorrelated relaxed clock (Drummond
et al. 2006) and a constant population size under a
coalescent model were established as priors. The rest
of the settings and priors were set by default. Two
independent chains were run for 50 million generations
each, sampling values every 1000 steps. All parameters
were analyzed using the program Tracer ver. 1.7 to check
for stationarity and convergence between runs. Burn-in
values were applied accordingly. Independent runs were
combined in LogCombiner ver. 1.6.0 and tree topologies
were assessed in TreeAnnotator ver. 1.6.0 to generate a
maximum clade credibility tree of all sampled trees with
median node heights.

Maximum likelihood (ML) tree inference was
performed using two methods, RAXML v.8.2.12
(Stamatakis 2014) and IQtree v.2 (Minh et al. 2020).
For RAXML, a general GTRCAT substitution model
for all genes was chosen and 100 rapid bootstrap
inferences were executed. For IQtree inference, a general
best-fit model for all genes was automatically selected
by ModelFinder (Kalyaanamoorthy et al. 2017) and
clade support was assessed using ultrafast likelihood
bootstrap with 1000 replicates (Hoang et al. 2018). To test
for possible effects of different modeling approaches
and partitioning schemes, we also inferred ML trees for
the combined data set partitioning characters by codon
position, where best substitution models were selected
by ModelFinder in IQtree and by PartitionFinder 2.1.1
(Lanfear et al. 2017) for RAXML.

For the resulting BEAST trees, nodes for genera
(as reviewed in Talavera et al. 2013a) were collapsed
into a single branch, producing a genus level tree
for subsequent topological comparisons of intergeneric
cladogenetic events between the three different data
sets. Genus-level trees were produced to discriminate
between topological differences belonging to inter- or
intrageneric relationships, which are not possible to
evaluate from the whole trees. The resulting backbone
phylogeny, improved in four relevant taxa, was taken
as a reference to re-evaluate generic classifications in
Polyommatina by applying the flexible temporal scheme
(4-5 Myr) proposed in Talavera et al. (2013a).

Simulations

We designed simulations to test the performance
of combined data sets in both resolving higher-level
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FIGURE 2.

Diagram representing the designed simulation experiments. a) Ten reference trees of 1000 tips were simulated using TreeSim. b)

Sequence evolution for independent markers were simulated along trees with SeqGen to generate two data sets: phylogenetic data sets including
7 markers + 1 barcode, and phylogenomic data sets including 100 markers + 1 barcode. ¢) A matrix reconstruction procedure produced matrices
including different fractions of nonbarcode fully sequenced tips (0%, 5%, 10%, 25%, 50%, 75%, and 100%). Two strategies in selecting these tips
were tested: random selections versus guided selections, where new additions of fully sequenced tips prioritized representatives for each genus.
All matrices included barcode data for all tips. d) Tree inference for all generated matrices were performed, using RAXML for phylogenetic
data sets (120 matrices, 6660 bp each), and IQtree for phylogenomic data sets (120 matrices, 81 354 bp each). Trees were collapsed into single
branches at nodes defining genera, thus generating genus-level trees. e) Phylogenetic performance for both species-level and genus-level trees
were evaluated against the originally simulated reference trees. Tree evaluation metrics included the proportion of correctly resolved nodes,
relative branch-length differences, averaged bootstrap values and degree of success in recovering monophyletic genera (for species-level trees

only).

relationships and placing barcodes within the correct
genera. A schematic experimental design is shown in
Figure 2. Ten reference trees were first simulated using
the function “sim.bd.taxa.age” in the R package TreeSim
(Stadler 2011). Parameters were set using information
from the Polyommatina phylogeny, including number of
tips, evolutionary time and the flexible temporal scheme
delimiting the number of genera. With these parameters,
trees were simulated to generate 1000 tips evolving in
15 Myr, \ was set to 0.9 and p to 0.05. An approximate
stem age interval between 4 and 5 Myr was then used to
delimit 34 monophyletic clades or hypothetical genera,
each of which randomly included a number of tips,
ranging from 1 to 166.

Next, DNA sequence evolution was simulated along
with the 10 generated trees. We simulated two scenarios:
1) a phylogenetic data set resembling our empirical data
and 2) a phylogenomic data set to test the backbone-
barcode imbalances in large-scale studies. We used

the software Seq-Gen (Rambaut and Grassly 1997) to
simulate evolution across molecular markers. For the
phylogenetic data set, Seq-Gen was run independently
eight times to simulate evolution in the molecular
markers commonly used in Polyommatina, COI, COIl,
EF,CAD, Wg,H3,ITS2, and 28S (with the exception of the
short mitochondrial leu-tRNA fragment). Parameters for
each marker were extracted from likelihood estimations
in JModeltest in the empirical data set and are shown
in the Supplementary Table S2 available on Dryad.
The eight generated alignments per tree were then
concatenated in matrices of 6660 bp, as a complete
(backbone) matrix model (Fig. la). Barcode data
sets were also generated with COI alignments, as a
single-gene (barcode) matrix model (Fig. 1b). For the
phylogenomic data set, we simulated evolution in 100
genes, where values for Seq-Gen parameters for each
marker were randomly assigned to values within the
range of those used in the empirical data set. The
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concatenation of the 100 generated alignments resulted
in backbone matrices of 81,354 bp.

In order to test for effects of nonbarcode
presence/missing data on phylogenetic (-omic)
performance, we also built five data sets where we
progressively increased the percentage of representation
by additional (nonbarcode) markers by 5%, 10%, 25%,
50%, and 75% (Fig. 2). The selection of tips represented
by these markers followed two strategies: 1) a random
selection per each percentage and 2) a guided selection
per each percentage prioritizing one addition per genus,
thus discarding already represented genera (until all
genera were represented). Thus, for each of the 10
simulated trees, we produced 12 matrices ranging
from 0% to 100% of nonbarcode data. Specifically, we
generated one barcode matrix, one complete matrix, five
matrices with a random selection of tips with multigene
data and five matrices with guided selection of tips
with multigene data. Overall, this procedure generated
a total of 120 simulated molecular matrices for the
phylogenetic data set, and 120 for the phylogenomic
data set.

Phylogenetic inference for all matrices in the simulated
phylogenetic data set was conducted using ML in
RAXML v.8 (Stamatakis 2014). We used the GTRCAT
model of nucleotide evolution and conducted a rapid
bootstrap analysis with 100 iterations and a search
for the best-scoring tree in a single run (-f a). For
the phylogenomic data set, ML phylogenetic inference
was conducted using IQtree v.2 (Minh et al. 2020), as
described for the empirical data set. All resulting trees
were also posteriorly collapsed into genus-level trees
(where intrageneric tips were collapsed into a single
branch) according to each of the reference simulated
trees.

Tree Evaluation (Empirical and Simulated)

The resulting phylogenetic trees, both from empirical
and simulated data sets, were evaluated along four
different axes: 1) percentage of nodes correctly resolved,
2) relative branch lengths differences using the K tree
score (K) (Soria-Carrasco et al. 2007), 3) bootstrap values
as an average of all nodes (for simulations only) and 4)
degree of success in recovering monophyletic genera.

For the empirical data sets, we scored the percentage
of matching nodes and K score between the combined
and barcode trees. We also scored these metrics
for the genus-level barcode tree and for the genus-
level combined tree, always taking the genus-level
backbone tree as a reference. Values for both genus-
level and species-level trees allowed us to discern
higher-level (between genera or deeper) and lower-
level (intrageneric) topological differences. The degree
of success in recovering monophyletic genera was
also compared between the combined and barcode
trees, using the function “AssessMonophyly” in the R
package MonoPhy (Schwery and O’'Meara 2016). For the
battery of simulations, the percentage of nodes correctly

resolved and K were also retrieved for both genus-
level and species-level trees, taking each corresponding
simulated tree as a reference (Fig. 2).

RESsULTS

Empirical Phylogenetics

At the genus-level, the percentage of nodes matching
the backbone tree was higher for the combined trees
(81.25% in BEAST, 71.87% in IQtree, and 43.75% in
RAXML) than for the barcode trees (12.5% in BEAST,
25% in IQtree, and 21.87% in RAXML) (Supplementary
Table S3 available on Dryad). Assuming that the
backbone tree provides the best phylogenetic hypothesis,
these results indicate a substantial improvement in
phylogenetic resolution for each of the three methods
when comparing the combined tree with the barcode
tree, even though only 8% of the specimens, representing
all genera, incorporated additional, non-barcode data.
A similar trend of improvement was observed for
relative branch length comparisons, where lower K
scores and scale-factors closer to one indicate branch
lengths that are more similar to each other between
two trees (Supplementary Table S3 available on Dryad).
According to this metric, the combined tree was also
more similar to the backbone tree (K = 1.57/0.006/0.10;
scale-factor = 1.05/0.92/0.70) than was the barcode tree
(K =15.85/0.08/0.14; scale-factor = 0.91/0.54/0.30).

At the species level, the percentage of nodes recovered
in both the combined tree and the barcode tree
was 42.33% in BEAST, 65.81% in IQtree and 57.52%
in RAxML, indicating that there were meaningful
differences between the two data sets in the phylogenetic
relationships recovered within each genus. Differences
between the three tree inference methods used to resolve
topologies and relative branch lengths were appreciable,
which may be related to the number of unresolved nodes.
No supported changes in topology at the genus level
could be detected in ML trees of the combined data
set when we compared nonpartitioned analyses with
analyses partitioned by codon position (Supplementary
Figs. S2 and S3 available on Dryad). The only observed
differences were associated with nodes that repeatedly
showed low support across all methods used.

When testing for inconsistencies in resolving
monophyletic genera using data from only the barcode
tree, we determined that the barcode tree failed to
cluster 5 of the 34 genera in the BEAST tree, 4 genera in
the IQtree tree, and 3 genera in the RAXML tree, while
the combined tree failed to cluster only one genus in
the RAXML tree (Supplementary Table S4 available on
Dryad).

In an initial exploratory step, the combined tree
recovered four taxa that each had an unexpected
placement or divergence that violated the criteria
applied to delimit genera in Polyommatina suggested
by Talavera et al. (2013) (i.e., divergencies of <4-5 Myr).
These four taxa were represented only by barcodes
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where nodes are collapsed into a single branch per genus (right), both showing the temporal banding used as a threshold for genus delimitation.

in the analysis. Since taxonomic changes might be
required for these four taxa, we increased their molecular
representation by sequencing the same additional genes
for them that were included in the backbone database.
Taxonomic decisions were then applied based on a
tree incorporating these additional sequences (Fig. 3,
Supplementary Fig. S1 available on Dryad).

Neolysandra corona was confirmed to be nested within
Polyommatus, and thus, we transferred the taxon corona
to Polyommatus.

Kretania psylorita’s divergence (4.02 Myr) fell within
the flexible temporal scheme of 4-5 Myr, and thus,
we retained psylorita together with the rest of the taxa
within Kretania, as defined here. However, the genus was
not well supported and relationships shifted depending
upon the method of phylogenetic reconstruction. Since
psylorita is the type-species of the genus Kretania, this
could have taxonomic consequences, but for now we
have opted for the topology most frequently recovered,
which is also in keeping with the morphology-based
classification.

Divergences for C. elicola (6.68 [4.58-9.01] Myr) and
C. kedonga (8.21 [5.65-10.77] Myr) were considerably
older than 5 Myr, ages that in both cases indicated
the need for a description of new, monotypic, genus.
We describe these two new genera as Birabiro gen. nov.
(type species elicola) and Kipepeo gen. nov. (type species
kedonga) (see Appendix).

Finally, we use these results to propose a full division
into subgenera of the large genus Polyommatus, including

the description of three new subgenera: Escherilycaena
subgen. nov., Amandolycaena subgen. nov. and
Iranolysandra subgen. nov. This new phylogenetic
classification helps to resolve other debated cases such
as that of Chilades parrhasius, which is transferred
to Luthrodes (see Supplementary material available
on Dryad for the full taxonomic description and
discussion).

Simulations

The phylogenetic consequences of combining
different sequencing strategies to infer higher-level
systematics were further evaluated using simulated
experiments. The proportion of nodes that were
correctly resolved in genus-level trees increased with
the percentage of fully sequenced tips in the matrices
(Fig. 4a). For the phylogenetic data set, the proportion
of nodes that were correctly resolved was 68.75% on
average for the barcode data sets and reached a peak
value of 94.06% for the combined data sets, whereas
for the phylogenomic data set, these values ranged
from 73.44% for the barcode data sets to 99.38% for the
combined data sets.

The improvement curve was optimized when the
selection of tips was guided to include one tip per genus
(Fig. 4a). In these cases, combined trees having only 5%
of fully sequenced tips (90.94% and 99.38% of correct
nodes in the phylogenetic and phylogenomic data sets,
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respectively), or 10% of fully sequenced tips (93.12% and
98.75% of correct nodes) already produced comparable
topologies to the ones resulting from complete matrices
with 100% of fully sequenced tips (93.44% and 99.38%
of correct nodes) (Fig. 4a). This was not the case using a
random selection strategy, where equivalent topologies

were achieved only when 50% of fully sequenced tips
were included (93.12% and 98.44% of correct nodes),
percentages that were likely to have included at least one
representative per genus by chance (Fig. 4a). In species-
level trees, a progressive improvement of phylogenetic
accuracy was also observed, but only reached the
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optimal when trees were reconstructed using 100% of
the data (Fig. 4a). The percentage of correctly resolved
nodes ranged from 86.1% in the barcode trees to 96.8%
in the complete trees for the phylogenetic data set, and
from 86% to 99.45% in the phylogenomic data set.

Tree shape as indicated by relative branch length
assessments performed similarly to topological
assessments (Fig. 4b). In these comparisons, higher
K scores indicate more disparate branch lengths than
lower K scores. For genus-level trees, an improvement
(decrease) of K was generally observed when guided
fully sequenced tips were progressively added: when
none of these were present, K =7.07 and K =6.58 for
phylogenetic and phylogenomic data sets respectively,
whereas when only 5% of fully sequenced tips
representing each genus were added, these values
dropped to K =297 and K =1.25, respectively. The
latter values were already quite close to those obtained
when 100% of taxa were fully sequenced, with K =2.44
and K =0.85, respectively (Fig. 4b).

This rapid convergence in branch length differences
did not occur for randomly selected, fully sequenced tips,
where K only approached optimal values when 100%
of fully sequenced tips were included (K =2.43 and K
=0.85) (Fig. 4b).

When assessing lower-level phylogenetic
relationships with species-level trees, K scores showed
a similar pattern with a progressive improvement from
0% of fully sequenced tips where K =13.74 and K
=13.35 for phylogenetic and phylogenomic data sets
respectively, to 100% of fully sequenced tips where
K =5.77 and K =2.12 (Fig. 4b). Random and guided
selections did not show substantial differences in
this case, suggesting that a guided selection of fully
sequenced tips is mainly of benefit in resolving deeper
level phylogenetic relationships.

Bootstrap values rapidly increased on average from
the barcode data sets (57.88%) to the combined data
sets, with 5% of fully sequenced tips (87.16% for guided
selection and 7716% for random selection) in the
genus-level trees of the phylogenetic data set (Fig. 4c).
Bootstrap values of the phylogenomic data sets increased
from 92.51% to 98.12% (guided selection) and 94.83%
(random selection) (Fig. 4c). Bootstrap values of the
species-level trees showed a progressive improvement
as fully sequenced tips were incorporated, independent
of the sampling strategy (Fig. 4c). Although the average
bootstrap does not provide information about which set
of nodes contribute the most to the topological changes
observed, the patterns are consistent between all of these
indices, and give no indication that a few nodes might
be strongly biasing the results.

The number of monophyletic genera in the
phylogenetic data sets increased with the number
of fully sequenced tips, starting with an average of
9.7% of nonmonophyletic genera out of 34 (involving
on average 13.4% of affected tips) in barcode trees
to 0.6% nonmonophyletic genera (involving 0.9% of
affected tips) in complete (100% gene sampling) trees
(Fig. 4d). Values in the phylogenomic data sets ranged

from an average of 9.1% of nonmonophyletic genera
(involving 11.1% of affected tips) to none (Fig. 4d).
No substantial differences were detected between
randomly and guided selection strategies. Fewer genera
were recovered as nonmonophyletic in the simulations
than in the empirical data set, highlighting the simplicity
of simulated evolution against the complexity of real
evolutionary processes in nature. Nevertheless, the
simulations show cases of tips that are hard to place
into the right genera, possibly due to effects of short
internode branching patterns or of “singletons,” genera
represented by a single terminal species, either because
of poor sampling or because monotypic lineages can
be grouped together erroneously due to long-branch
attraction.

DiscussiON

Robustness of the Combined Approach

All tree evaluation methods assessed, both for
empirical and simulated data, show important
improvements in phylogenetic accuracy when
progressively increasing fully sequenced tips (Fig. 4,
Supplementary Table S3 available on Dryad). Topology,
bootstrap support, and concordance in relative branch
lengths are particularly strengthened when fully
sequenced tips are not added randomly but are
selected with the goal of representing at least one
tip per genus (Fig. 4). Taxonomically balanced,
multigene phylogenetic information seems efficient
at counteracting the leading signal of the single-gene
COI history in the combined phylogenies. Trees with
5-10% fully sequenced tips are comparable to those with
100% fully sequenced tips, but not to trees inferred from
only barcodes. Interestingly, this effect mostly applies to
deeper level phylogenetic relationships (i.e., genus-level
trees) (Fig. 4).

The K score can be interpreted as a proxy for
divergence time estimates. Missing data have previously
been estimated to have little influence in the accuracy of
divergence dating in BEAST (Zheng and Wiens 2015).
Our empirical results also show little difference in
divergence times when comparing the backbone and
the taxonomy-guided combined data sets. This is also
reflected in the simulations, which achieve near optimal
values at 10% sampling provided fully sequenced tips
are selected to be representative of each genus. However,
data sets where fully sequenced tips are added randomly
do not achieve optimal values until sampling is 100%
complete (Fig. 4).

The placement of species into genera with which they
are traditionally associated is reflected by the number
of monophyletic genera recovered by an analysis. Our
empirical data show that taxa are likely to be misplaced
into genera with which they are not normally associated
in phylogenies based exclusively on data from COI-
based barcodes, with up to five genera recovered as
nonmonophyletic (affecting 768 of the tips of the tree)
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(Supplementary Table S4 available on Dryad). However,
inaccurate placements are reduced in phylogenies based
on the combined data sets. The same result is obtained
with simulations, where the number of monophyletic
genera improves progressively with the addition of fully
sequenced tips (Fig. 4d).

Studies carried out by Cho et al. (2011) and Kawahara
et al. (2011) show at the order and family level
respectively that increased gene sampling improves
estimates of deep relationships as indicated by higher
support values. Our simulated findings are generally
compatible with these results (Fig. 4), which have also
been observed in multiple other phylogenies when
increasing the number of characters (Rokas et al. 2003;
Bapteste et al. 2002; Dunn et al. 2008; Zwick et al. 2011;
Wilson 2011; Wilson et al. 2011; Kuntner et al. 2019).

The simulated phylogenomic analyses (Fig. 4) show
that data sets with large barcode representation can
be successfully combined with modern genomic data
sets where taxa have been sampled for a large number
of genes. The overall performance of the simulated
combined phylogenomic data set (100 genes + barcode)
is better than that of the phylogenetic combined data set
(7 genes + barcode), as expected by the much greater
number of characters. Again, in order to produce the
best possible trees, it is key that taxa with genomic
data represent a diversity of higher-level taxonomic
categories. Thus, phylogeneticists are encouraged—and
many do so instinctively—to strategically design their
sampling to include 1) taxonomically distributed and
representative species characterized with genomic data
as well as 2) well-sampled barcode data from individuals
representing as many species as possible in order to
recover large-scale phylogenetic relationships.

DNA Barcodes as a Tool for Higher-Level
Systematics: A New Value

A great many DNA barcodes representing a wide
array of organisms have been generated and deposited
in public repositories in recent years. Several markers
function as DNA barcodes, with mitochondrial COI
typically representing animals, and others such as ITS2
representing fungi, rcbl or matK representing plants,
and 165 rRNA representing bacteria. To date, nearly 9.2
million barcoded specimens are available on the BOLD
database, and nearly 4 million can be extracted from
GenBank for COL

Potential applications of DNA barcodes are varied.
First, they have been used as references for species-
level identification since their conception (Hebert et al.
2003), and their impact on taxonomy is undeniable
(Miller 2007; Hubert and Hanner 2015; Dinca et al.
2015; Miller et al. 2016). Conceptual variations of the
initial DNA barcode idea such as metabarcoding have
expanded into many other fields of molecular ecology
and community ecology (Creer et al. 2016). DNA
barcodes are also widely applied in phylogeography and
surveys of intraspecific variability. After much initial

debate, it is now well established that DNA barcoding
(and any other single-marker approach) can be a useful
tool to identify potential cryptic species, although an
integrative approach is necessary for confirmation (e.g.,
nuclear markers, morphology, and ecology) (Will et al.
2005; DeSalle et al. 2005; Talavera et al. 2013b; Dinca
etal.2015; Herndndez-Roldéan et al. 2016; Lukhtanov et al.
2016; Gaunet et al. 2019).

Few studies have assessed whether DNA barcodes
can be helpful at placing unidentified species into
higher-level taxonomic categories (Wilson et al. 2011;
Coddington et al. 2016). Here, we show that DNA
barcoding can potentially be applied to assign taxa
to genera (or higher categories) provided a solid and
representative higher-level backbone phylogeny exists.
Our results indicate that large data sets of barcodes can
be used to identify cases where taxa have been wrongly
assigned to higher-level taxonomic categories, a frequent
problem in diverse groups with complex taxonomy,
where synapomorphies helping to delineate genera have
been difficult to find.

In the case where potential higher-level cryptic taxa
are indicated by the results, these can be the focus
of further taxonomic assessments following standard
principles of phylogenetic systematics, such as the
addition of molecular characters that aid in phylogenetic
placement. Our proposed workflow for phylogenetic
systematic assessments (Fig. 5, Supplementary material
available on Dryad) takes advantage of the huge number
of sequenced specimens available in public databases
with the aim of accelerating taxonomic resolution at
higher-taxonomic levels. It may facilitate molecular-
based taxonomy in research labs where phylogenomic
techniques are not yet easily available and, ultimately,
benefit the common goal of taxonomic stability.

CONCLUSIONS

Phylogenetic inference based exclusively on DNA
barcodes has been shown, both here and elsewhere, to
perform poorly. However, we show how in combination
with a backbone of carefully sampled, representative
taxa for which a large number of additional markers
have been sequenced, these short barcode sequences
can nevertheless be used effectively to produce reliable
phylogenies and improve higher-level systematics in
large data sets. Our simulation tests show that a
multigene sampling for as few as 5-10% of the
specimens in the total data set can produce high-quality
phylogenies, comparable to those resulting from 100%
multigene sampling, provided a strategic selection has
been made of higher-level representatives for multigene
sequencing (approximately one per genus). These results
are found at both a phylogenetic and phylogenomic
scale, thus accounting for a wide range of imbalance
in the number of characters between the combined
barcode and backbone matrices. Thus, as long as
backbone matrices are taxonomically representative,
data coming from probe capture, transcriptomic or
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genomic techniques can be effectively combined with
barcodes to generate phylogenetically accurate, large-
scale molecular characterizations of biodiversity.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061 /dryad.mOcfxpp0d.
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APPENDIX 1

Taxonomic Descriptions

Kipepeo Lukhtanov, Talavera, Pierce & Vila gen. nov
urn:Isid:zoobank.org:act:03C66BDD-56 AF-47D1-94F5-
FABD45094262

Type species: Everes kedonga Grose-Smith, 1898

The name is masculine in gender.

Diagnosis. The genus Kipepeo differs in male genitalia
(Supplementary Fig. S3a and b available on Dryad)
from the representatives of the closest genera Luthrodes,
Chilades and Birabiro by relatively short and broad
valves with angular, tooth-similar lower process; in
wing pattern it differs by wing underside with
distinct enlarged roundish ocelli and by hind wing
underside with a row of large orange submarginal spots
(Supplementary Figs. S1 and S2a available on Dryad). It
can also be distinguished from other genera by unique
molecular characters from COI, COIl, Wg, ITS2, CAD,
and H3 (see Supplementary material available on Dryad
for the full taxonomic description and discussion).
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Etymology. The name refers to the word “butterfly” in the
Swahili language, specific to East Africa.

Birabiro Lukhtanov, Talavera, Pierce & Vila gen. nov.
urn:lsid:zoobank.org:act:015918DC-EE7 A-477D-9902-
2D0D0175EFBB

Type species: Cupido elicola Strand, 1911

The name is masculine in gender.

Diagnosis. The genus Birabiro differs from the closest
genera Luthrodes and Chilades by the trapezoidal
(not fusiform) shape of the valve in male genitalia
(Supplementary Fig. S4 available on Dryad). The only
representative of this genus (Birabiro elicola) has a
plesiomorphic pattern on the wing underside, with the
presence of all the basic elements typical of the non-
Neotropical Polyommatina (Supplementary Fig. S2b
available on Dryad). Thus, this pattern has no diagnostic
value to distinguish the genus Birabiro. However,
Birabiro represents a distinct monophyletic entity on the
basis of molecular characters. It can be distinguished
from other genera by unique molecular characters
from COI, COII, ITS2, and H3 (see Supplementary
material available on Dryad). The genus Birabiro differs
from the genus Kipepeo by the wing pattern and the
structure of the male genitalia, as well as by above
mentioned molecular characters (see Supplementary
material available on Dryad for the full taxonomic
description and discussion).

Etymology. The name refers to the word “butterfly” in the
Ambharic language, specific to Ethiopia.

Polyommatus (Iranolysandra) Lukhtanov, Talavera,
Pierce & Vila subgen. nov.
urn:lsid:zoobank.org:act:BAF45FDC-0398-4103-BF2F-
B569BB014336
Type species: Lysandra corona Verity, 1936
Diagnosis. The wing pattern of Iranolysandra
(Supplementary Fig. S5a available on Dryad) is
most similar to those found in two other genera:
Neolysandra (the sister genus to Polyommatus) and
Glaucopsyche (very distant genus with completely
different structure of genitalia). All these taxa share
a similar wing pattern that seems to have evolved
independently three times. However, Iranolysandra
represents a distinct monophyletic entity on the basis
of molecular characters. It can be distinguished from
other subgenera of the genus Polyommatus by using
molecular markers from COI, COII, ITS2, and CAD (see
Supplementary material available on Dryad for the full
taxonomic description and discussion).

The subgenus Polyommatus (Iranolysandra) includes the
species: P. (I.) corona, P. (1.) fatima, P. (I.) stempfferi and
P.(1.) fereiduna.

Etymology. The name Iranolysandra reflects the
distribution area of the subgenus (distributed mostly in
Iran) and its phenotypic similarity to the species of the
genus Neolysandra.

Polyommatus (Amandolycaena) Lukhtanov, Talavera,
Pierce & Vila subgen. nov.

urn:lsid:zoobank.org:act:7363C141-F71 A-4844-9728-
0676F4FD43E0
Type species: Papilio amandus Schneider, 1792

Diagnosis. The wing pattern of Amandolycaena
(Supplementary Fig. S5b available on Dryad) seems
to represent a plesiomorphic character found in the
genus Polyommatus. It is most similar to those found
in other subgenera of Polyommatus: Polyommatus
sensu stricto, Plebicula, Thersitesia, Sublysandra, and
Escherilycaena. However, Amandolycaena represents a
distinct monophyletic entity on the basis of molecular
characters. It can be distinguished from other subgenera
of the genus Polyommatus by using molecular markers
from COI, COII, and Wg (see Supplementary material
available on Dryad for the full taxonomic description
and discussion).

The subgenus includes a single species Polyommatus
(Amandolycaena) amandus (Schneider, 1792).

Etymology. The name Amandolycaena reflects the name of
the type-species (Papilio amandus) and includes the word
Lycaena that has been used in the past as a genus name
for blue butterflies.

Polyommatus (Escherilycaena) Lukhtanov, Talavera,
Pierce & Vila subgen. nov.
urn:lsid:zoobank.org:act:2FBDDBBB-1073-43CE-845C-
1D3491544390

Type species: Papilio escheri Hiibner, [1823]

Diagnosis. The wing pattern of Escherilycaena
(Supplementary Fig. S8 available on Dryad) seems
to represent a plesiomorphic character found in the
genus Polyommatus. It is most similar to those found
in other subgenera of Polyommatus: Polyommatus
sensu stricto, Plebicula, Thersitesia, Sublysandra, and
Amandolycaena. However, Escherilycaena represents a
distinct monophyletic entity on the basis of molecular
characters. It can be distinguished from other subgenera
of the genus Polyommatus by using molecular markers
from COI, COIlI, EF-1a, Wg, CAD, H3, and 28S (see
Supplementary material available on Dryad for the full
taxonomic description and discussion).

The subgenus includes a single species Polyommatus
(Escherilycaena) escheri Hiibner, [1823].

Etymology. The name Escherilycaena reflects the name of
the type-species (Papilio escheri) and includes the word
Lycaena that has been used in past as a genus name for
blue butterflies.
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