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Cycad-feeding insects share a core gut microbiome
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Five insect species including three species of weevils (Coleoptera) and two species of lycaenid butterflies (Lepidoptera) 
that feed exclusively on the carcinogenic and neurotoxic tissues of cycads were found to share a core set of bacterial 
phylotypes, including the bacterium Raoultella ornithinolytica, which has known anti-cancer and nitrogen-fixing 
capabilities. The other shared bacteria belong to lineages that include insect-associated and extremophilic taxa. The 
presence of Raoultella ornithinolytica and an unknown Enterobacteriaceae was in contrast to a set of non-cycad-
feeding relatives of these insects, none of which contained this same set of shared bacterial phylotypes. Given the 
considerable phylogenetic distance between the cycadivorous insect species as well as the fact that shared microbiota 
are not found in their non-cycad-feeding relatives, our data suggest that this core set of shared bacteria are import-
ant in helping cycad feeders detoxify their poisonous host plants.

ADDITIONAL KEYWORDS: BMAA – β-methylamino-l-alanine – coevolution – Cycadales – gut microbiome – 
herbivory – lycaenid – methylazoxymethanol.

INTRODUCTION

The plant order Cycadales comprises ten genera 
with ~350 species found across the tropics (Calonje, 
Stevenson & Stanberg, 2017). These dioecious gym-
nosperms are often obligately insect-pollinated and in 
many cases provide a brood site for pollinators that 
feed and develop on their tissue (Norstog, Stevenson 
& Niklas, 1989; Stevenson, Norstog & Fawcett, 1998; 
Terry et al., 2012; Brookes et al., 2015; Valencia-
Montoya et al., 2017). Cycads are among the most 
ancient lineages of seed plants with a fossil record 
extending back over 250 My (Mamay, 1969; Gao & 
Thomas, 1989) and while they are currently the most 
endangered plant order in the world (IUCN, 2017), 
they were once a dominant component of the Mesozoic 
flora (Friis, Chaloner & Crane, 1987; Thomas & Spicer, 
1987). Cycads produce many secondary metabolites 
(De Luca et al., 1982; Khabazian et al., 2002), includ-
ing two highly toxic compounds found in species 
throughout the order: methylazoxymethanol (MAM) 
(De Luca et al., 1980; Moretti, Sabato, Gigliano, 1983) 
and β-methylamino-l-alanine (BMAA) (Vega & Bell, 
1967). Whereas non-cycadivorous insect herbivores do 

not encounter these plant compounds in their diets, 
insects that have specialized on cycads must be cap-
able of contending with both toxins concurrently, and 
each compound acts in very different ways.

MAM has both carcinogenic and neurotoxic effects 
(Laqueur & Spatz, 1968; Morgan & Hoffmann, 1983). 
This compound occurs in the plants in a non-toxic 
form in which the toxic agent, MAM, is attached to 
a glycoside. While MAM-glycosides are found in all 
cycad genera (De Luca et al., 1980; Moretti, Sabato & 
Gigliano, 1981, 1983), the non-toxic storage form may 
differ depending on the glycoside attached to MAM. 
The two most common MAM-glycosides are cyca-
sin, in which the glycoside is β-d-glucose (Nishida, 
Kobayashi & Nagahama, 1955), and macrozamin, in 
which the glycoside is a disaccharide of glucose and 
xylose (Lythgoe & Riggs, 1949). In both cases, toxicity 
results from cleavage of the glycoside from MAM by the 
activity of endogenous glucosidase enzymes (Laqueur 
& Spatz, 1968; Schneider et al., 2002) that are pro-
duced in the digestive tracts of mammals and insects 
(Conchie & MacDonald, 1959;  Terra & Ferreira, 1994). 
Once cleaved, MAM spontaneously degrades into for-
maldehyde and methyl-diazonium, a potent methylat-
ing agent (Morgan & Hoffmann, 1983). MAM-induced 
genetic alterations have been described in plants, 
mammals, yeast, bacteria and insects (Morgan & 
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Hoffmann, 1983). MAM-glycosides have been found 
in all cycad genera and in all plant tissues that have 
been tested, including seeds, leaves, pollen and ovu-
late cones, roots and stems (Cooper, 1941; Riggs, 
1954; De Luca et al., 1980; Moretti et al., 1981, 1983; 
Blagrove, Lilley & Higgins, 1984; Rothschild, Nash 
& Bell, 1986; Yagi & Tadera, 1987; Bowers & Larin, 
1989; Lindblad, Tadera & Yagi, 1990; Nash, Bell & 
Ackery, 1992; Vovides et al., 1993; Castillo-Guevara 
& Rico-Gray, 2003; Yagi, 2004; Prado, 2011; Nair & 
Staden, 2012; Prado et al., 2014, 2016).

The second class of cycad toxins, BMAA, has received 
considerable attention by virtue of its implication as 
the causative agent of amyotrophic lateral sclerosis-
parkinsonism-dementia, a human neurobiological 
disease that is endemic to the island of Guam and is 
also referred to as Guam’s dementia (Cox, Banack & 
Murch, 2003). BMAA was first isolated from cycads 
by Vega & Bell (1967) in response to an extremely 
detailed account of cycad consumption and toxic 
effects in humans and cattle (Whiting, 1963). BMAA’s 
toxicity arises from its disruption of glutamate recep-
tor function. Glutamate receptors have deep homology 
and are found across plants and animals (Lam et al., 
1998; Chiu et al., 1999; Lacombe et al., 2001). BMAA 
works as a neurotoxin in insects (Goto, Koenig & 
Ikeda, 2012) and mammals, causing convulsions and 
neural degeneration (Spencer et al., 1987) as well as 
abnormalities in brain development (Kisby, Moore & 
Spencer, 2013). In Arabidopsis, BMAA-induced glu-
tamate receptor blockage affects signal transduction 
causing hypocotyl elongation and inhibiting coty-
ledon opening (Brenner et al., 2000). Moreover, as a 
non-protein amino acid, BMAA can be incorporated 
into proteins, fundamentally altering their structure 
and function (Dunlap et al., 2013). It is unknown how 
the cycad protects itself from this endogenous toxin. 
BMAA has been found in all cycad genera and in all 
tested tissues, including leaves, pollen and ovulate 
cones, seeds, pollen and roots (Dossaji & Bell, 1973; 
Duncan, Kopin & Crowley, 1989; Norstog & Fawcett, 
1989; Vovides et al., 1993; Pan et al., 1997a, b; Banack 
& Cox, 2003).

Given the highly toxic nature of these compounds 
and their presence throughout plant tissues, only 
specialized insects are able to utilize cycads as a 
food source. Many of these are pollinating herbi-
vores, including species from several genera of bee-
tles that feed on pollen cone parenchyma tissue and 
coevolve with their host cycads (Donaldson, Nänni & 
Bösenberg, 1995; Stevenson et al., 1998; Terry et al., 
2012; Suinyuy, Donaldson & Johnson, 2015). In add-
ition to pollinating herbivores, several folivorous 
Lepidoptera are obligate cycad feeders for either their 
entire larval development or for their first few instars 
(e.g. Sihvonen, Staude & Mutanen, 2015).

Relatively little is known about potential toxin toler-
ance mechanisms in cycadivorous insects, which could 
include methods to detoxify, sequester and/or avoid 
plant defensive chemicals. One study focused on BMAA 
avoidance in the pollinating weevil, Rhopalotria furfu-
racea (previously R. mollis), which feeds on pollen cone 
parenchyma tissue of Zamia furfuraceae (Norstog & 
Fawcett, 1989). In this case, staining experiments dem-
onstrated that plants sequester BMAA in specialized 
plant cells (idioblasts) that are able to pass through 
the insect gut intact. Interestingly, these idioblast cells 
were found intact in the pollen cones on which the wee-
vils feed, but burst open in ovulate cones, which the 
weevils visit but never eat. The authors suggested that 
this plant mechanism restricts pollinator herbivory to 
the expendable pollen cone tissue. No known or pro-
posed mechanism exists for BMAA tolerance or avoid-
ance in leaf or ovulate cone feeders where the toxin is 
not sequestered in plant idioblasts.

The only other investigation into cycad toxin tol-
erance mechanisms focused on MAM tolerance in a 
leaf-feeding moth. A β-glucosidase enzyme was found 
to be localized in the guts of the larvae of the ‘echo 
moth’, Sierarctia echo, feeding on leaves of Zamia inte-
grifolia, and this insect was shown to produce cycasin 
when fed the toxic MAM (Teas, 1967). Echo moths are 
aposematically coloured as both larvae and adults, and 
are thought to sequester and utilize the host plant’s 
cycasin for protection. Teas (1967) hypothesized that 
this endogenous β-glucosidase enzyme rehydrolyses 
the toxic MAM with a glycoside, reverting the com-
pound into its non-toxic form, cycasin. Laqueur & 
Spatz (1968) suggested that this enzyme could be of 
microbial origin, yet this remains untested, and it is 
unknown whether the enzyme is present in the guts of 
other cycadivorous insects.

The suggestion that microbes may play a role in 
toxin tolerance in Sierarctia echo moths is particularly 
interesting given the growing evidence that many herb-
ivorous insects rely on symbiotic gut bacteria to medi-
ate the challenges associated with plant-based diets 
(Douglas, 2013), including degrading plant secondary 
metabolites (Boone et al., 2013; Ceja-Navarro et al., 
2015) and countering specialized plant defences (Chu 
et al., 2013). It is possible that cycadivorous insects 
rely on gut bacteria to ameliorate their highly toxic 
diets, and given the similar plant defensive chemistry 
that all cycad herbivores are exposed to, even distantly 
related insects may have converged upon similar bac-
terial associations. To investigate these possibilities, 
we used 16S amplicon sequencing to characterize and 
compare the gut bacterial communities of five spe-
cies of cycadivorous insects from two different orders, 
and to identify and investigate bacterial phylotypes 
that are shared across these phylogenetically distinct 
insect species.
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MATERIAL AND METHODS

We collected three Curculionidae (Coleoptera) weevil 
species and two Lycaenidae (Lepidoptera) butterfly 
species that feed on a variety of cycad species and tis-
sues (Table 1, Fig. 1). Insects were either immediately 
flash frozen whole in liquid nitrogen or dissected and 
the gut preserved in ethanol, and all samples were 
stored at −80 °C. Whole insect samples were surface 
sterilized for 5 s in 10% bleach and rinsed in PBS prior 
to DNA extraction using the Powersoil DNA isolation 
kit and protocol (MoBio Laboratories, Carlsbad, CA, 
USA) with the addition of 60 µg proteinase K to the 
lysis buffer. DNA concentration was assessed using a 
Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA) 
and samples with low DNA yields were concentrated 
using the MoBio protocol.

Extracted DNA was sent to Argonne National 
Laboratories (Lemont, IL, USA) for library prepar-
ation and sequencing of the V4 region of the 16S rRNA 
gene. Library preparation used barcoded primers 
515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R 
(5′-GGACTACNVGGGTWTCTAAT-3′) and the meth-
ods from Caporaso et al. (2012). Libraries were pooled, 
and 150-bp paired end reads were sequenced on an 
Illumina MiSeq sequencer.

Raw sequences were preprocessed using previously 
published methods (Whitaker et al., 2016). Because 
the 16S universal primers we used are known to also 
amplify organellar DNA, we compared chloroplast 
abundance across samples before removing non-target 
sequences, which included chloroplasts and mitochon-
dria as well as the common laboratory contaminants, 
Staphylococcaceae and Escherichia. We then applied a 
filtering method requiring bacterial operational taxo-
nomic units (OTUs) to be represented by at least ten 
sequences in the data set and at a minimum relative 
abundance of 0.05% per sample in order to be included 
in the analysis.

Core microbiomes were calculated using the filterfun 
function in the phyloseq package in R, requiring bacter-
ial OTUs to be present in all replicates within a species 
(species cores) or all cycad herbivore replicates (cycad 
herbivore core, hereafter ‘shared OTUs’). The taxonomic 
assignments of all core OTUs were further checked 
using NCBI BLAST and Seqmatch from the Ribosomal 
Database project (Cole et al., 2014). Shared bacterial 
OTUs were further analysed using the Oligotyping pipe-
line v2.1 (Eren et al., 2013) with a minimum substantive 
abundance of 10 and the smallest number of entropy posi-
tions needed to properly decompose oligotypes. For com-
parison, we searched for these shared OTUs in published 
surveys of the gut microbiomes of six species of non-cycad-
ivorous ‘outgroup’ insects: two Lycaenidae (Lepidoptera) 
and four Curculionidae (Coleoptera) (details in  
Supporting Information S1). For these comparisons, we T
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processed and analysed raw 16S sequences of gut bac-
teria in the same way that we did with the cycadivorous 
insects.

For diversity analyses, libraries were first rarified to 
10 000 sequences, retaining any library with at least 
5000 sequences. The similarity of each sample’s bac-
terial community composition was compared using 
the Bray–Curtis dissimilarity metric and hierarch-
ical clustering based on weighted UniFrac distances 
where OTU abundances were averaged across repli-
cates within a species. All sequence data are deposited 
in the EMBL-EBI database.

RESULTS

Raw sequences clustered into 1789 unique OTUs 
across the 31 samples. As expected, chloroplast 16S 
sequences were found in high abundance in caterpil-
lars of both leaf-feeding Lepidoptera, Eumaeus atala 
and Chilades pandava, but were unexpectedly preva-
lent in cone-feeding weevils, R. furfuracea, as well 
(median 60% of the total sequences, 18% inter-quartile 
range). After abundance filtering and removing non-
target OTUs, the filtered dataset lost one Eum. atala 
sample due to small library size but retained 177 taxo-
nomic OTUs across the remaining 30 samples. This 
filtered dataset was used in all subsequent analysis.

Two additional samples were omitted following rar-
efaction for diversity analyses due to small library 
sizes, one R. furfuracea and one Eum. atala. The 
remaining samples clustered in a characteristic pat-
tern in non-metric multidimensional scaling (NMDS) 
ordinations and hierarchical clustering (Fig. 2B, C). 
The gut microbiota of all five cycad-feeding insects 
were remarkably conserved, clustering mainly by spe-
cies except for an overlap between R. furfuracea and 
C. pandava in NMDS ordinations of Bray–Curtis dis-
tances (stress 0.13; Fig. 2B). Rhopalotria furfuracea 
and C. pandava also grouped by similarity in hierarch-
ical clustering (Fig. 2C). Taxonomy plots demonstrate 
a compositional similarity between these two species, 
driven by the dominance of Alicyclobacillaceae and 
Comamonadaceae in the gut bacterial communities of 
both insects (Fig. 2A).

The five most abundant bacterial families in our 
dataset were Alicyclobacillaceae, Enterobacteriaceae, 
Moraxellaceae, Comamonadaceae and Enterococcaceae 
(Fig. 2A). Bacterial OTUs found in all samples of a 
species are reported briefly in Table 2 and in detail 
in Supporting Information S2. Most significantly, the 
microbiota of all five cycad-feeding species showed 
significant overlap for five OTUs that were present 
in all replicates (Table 2). The greengenes taxonomic 
assignments, however, did not match NCBI BLAST 
results for any of these five shared OTUs. Only one of 

Figure 1. Cycad herbivores share five bacterial OTUs. Herbivore species are shown corresponding to the plant tissue on 
which they feed. Circles show core microbiome counts. Insets of adult insects are included in cases where we sampled the 
larval stage. Plant tissues are coloured to highlight the pollen cone (red) and stem (blue – underground for Zamia integrifo-
lia). Herbivores of Zamia are (top to bottom): Eumaeus atala (note the aposematic colouring of both life stages), Rhopalotria 
furfuracea, Pharaxanotha floridana and Eubulus sp. The sole herbivore of Cycas is Chilades pandava.
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the shared OTUs could be identified to species using 
NCBI BLAST (OTU 5: Raoutella ornithinolytica in the 
Enterobacteriaceae). The four remaining OTUs could 
only be identified to the family level using NCBI BLAST 
search (OTUs 4 and 249 in the Enterobacteriaceae, 
OTU 3 in the Alicyclobacillaceae and OTU 85 in the 

Rickettsiaceae; Table 2). Unidentified bacteria are not 
surprising when exploring novel environmental sam-
ples, and the four OTUs that could be identified only to 
family belong to bacterial families that include insect-
associated and extremophilic bacteria. Of these five 
shared OTUs, OTU 4 (Enterobacteriaceae) and OTU 5 

Figure 2. (A) The relative abundance of the 20 most abundant bacterial families per sample shows that Enterobacteriaceae 
and Alicyclobacillaceae are dominant in the guts of several species. (B) In ordinations based on Bray–Curtis distances 
(stress 0.13), gut bacterial communities generally cluster according to species, except for a striking similarity in the gut 
communities of Rhopalotria furfuracea and Chilades pandava. (C) Hierarchical clustering of insect species by bacterial com-
munity composition also highlights the similarity between R. furfuracea and C. pandava.
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(Raoutella ornithinolytica) were found solely in cycad 
herbivores. None was found in any of the outgroup 
weevils. However, OTUs 3, 85 and 249 were found in 
both outgroup butterflies.

Oligotyping results for shared OTUs are pre-
sented in Figure 3 (data in Supporting Information 
S3). Twenty-one unique oligotypes were found for 
Raoutella ornithinolytica (OTU 5). Pharaxanotha 
floridana had the most consistent composition of 
Raoutella ornithinolytica oligotypes, with Eubulus 
sp. showing a similar although less constrained pat-
tern (Fig. 3). In contrast, Eum. atala was dominated 
(> 93%) by one Raoutella ornithinolytica oligotype 
across all replicates. Twenty unique oligotypes were 
found for OTU 4 (Unknown Enterobactereaceae). 
Again, P. floridana and Eub. sp. showed consistent 
patterns of OTU 4 oligotype composition, whereas 
OTU 4 oligotype composition was highly variable 
in the remaining species (Fig. 3). Only three oli-
gotypes were recovered for OTU 249 (Unknown 
Enterobactereaceae), one of which dominated all sam-
ples. Finally, oligotyping analysis found no entropy 
peaks for either OTU 85 (Unidentified) or OTU 3 
(Unknown Alicyclobacillaceae).

DISCUSSION

Our results show that five cycad-feeding insect species 
from two orders share a core set of bacterial OTUs in 
their gut microbiota, despite being generally distinct 
in overall bacterial community composition. While the 
functions of these OTUs remain unknown, our results 
are consistent with the hypothesis that gut bacteria 
may mediate herbivory of cycads, and they identify 
specific bacterial phylotypes as candidates for future 
functional study.

In terms of the entire community of gut microbiota, 
we found that each insect harbours a distinctive spe-
cies-specific bacterial assemblage, with the exception 
of R. furfuracea weevils and C. pandava butterflies, 
whose communities of microbiota were surprisingly 
similar. For example, chloroplasts were found in high 
abundance in all Lepidoptera, as well as R. furfuracea, 
but were not found in the other Coleoptera. In ordin-
ation plots based on community dissimilarity met-
rics, the gut bacterial communities of R. furfuracea 
weevils clustered more closely with C. pandava than 
with P. floridana, the other cone-feeding coleopteran 
(Fig. 2B). Larvae and adults of R. furfuracea feed only 

Table 2. Five bacterial OTUs are shared across five species of herbivores feeding on cycads

Chilades 
pandava

Eumaeus 
atala

Rhopalotria 
furfuracea

Pharaxanotha 
floridana

Eubulus sp.

Unknown Alicyclobacillaceae 3 3 3 3 3
Unknown Rickettsiaceae 85 85 85 85 85
Unknown Enterobacteriaceae 249 249 249 249 249
Enterobacteriaceae Raoultella 

ornithinolytica
5 5 5 5 5

Unknown Enterobacteriaceae 4 4 4 4
596

4
596

Comamonadaceae Curvibacter 13 13 13
Enterococcaceae Enterococcus 15 15 15
Comamonadaceae Lampropedia 36 36
Comamonadaceae Comamonas 432 432
Streptococcaceae Lactococcus 10 10
Alcaligenaceae Achromobacter 24 24
Unknown Blattabacteriaceae 240 240
Sphingobacteriaceae 

Sphingobacterium
17 17

Moraxellaceae Acinetobacter 763 187
2 2

91
37
21
47

OTUs that were found to be part of more than one species’ core microbiome are shown and highlighted in grey. Full species microbiota are listed in 
Supporting Information S2. OTUs were considered to be part of the species core microbiota when present in 100% of the samples for that species. They 
are designated here by their OTU number.
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Figure 3. Oligotyping analysis of the two OTUs that were unique to cycad herbivores. Eumaeus atala was dominated 
by one oligotype for OTU 5 (Raoultella ornithinolytica). OTU 4 (Unknown Enterobacteriaceae) displayed highly con-
strained compositional patterns within Eubulus sp. and Pharaxanotha floridana. OTU 85 (Unidentified) and OTU 3 
(Unknown Alicyclobacillaceae) were each represented by a single oligotype across all samples, and OTU 249 (Unknown 
Enterobacteriaceae) was dominated by a single oligotype across all species, so oligoptyping results for those three OTUs are 
not shown here.
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on the microsporophyll of the pollen cone (Fawcett & 
Norstog, 1993), which is developmentally a modified 
leaf (Gifford & Foster, 1989), whereas P. floridana lar-
vae feed on cone peduncle tissue (Fawcett & Norstog, 
1993), which is developmentally a modified stem 
(Gifford & Foster, 1989). It is possible that the bac-
terial compositional similarities we observe between 
R. furfuraceae and C. pandava reflect developmen-
tally related chemical or nutritional similarities in the 
plant tissues on which they feed. Further research on 
the chemical composition of various cycad tissues will 
be necessary to test this hypothesis.

Ordination plots demonstrated that the microbiota of 
P. floridana, and to some extent those of Eub. sp., were 
more similar to each other than they were to those of 
the remaining three species. In fact, whether looking at 
the OTU (Fig. 2A) or sub-OTU level (oligotype; Fig. 3), 
P. floridana samples exhibited highly conserved bac-
terial community compositions across replicates. It is 
unclear if these conserved assemblages are a product 
of limited environmental exposure, vertical transmis-
sion or selection by the host. Pharaxanotha floridana 
beetles feed on pollen for their first two instars, and 
then spend the remainder of their larval development 
within the peduncle of the pollen cone, a fairly closed 
environment (Fawcett & Norstog, 1993). Further sam-
pling of Pharaxanotha adults, which feed exclusively 
on cycad pollen (Fawcett & Norstog, 1993), would help 
to elucidate whether these insects harbour consist-
ent bacterial communities during all life stages. This 
would enable us to assess the relative contributions of 
host selection versus environmental exposure in deter-
mining gut bacterial community assemblages in these 
beetles.

Four of the five shared OTUs found in the guts of 
cycad-feeding insects were unidentifiable to genus. 
The one that could be identified, however, offers some 
insight into potential activities of the gut bacterial 
community. OTU 5 was identified as Raoultella orni-
thinolytica, a bacterium that has been shown to fix 
nitrogen in the guts of wild Ceratitis capitata fruit flies 
(Behar, Yuval & Jurkevitch, 2005) and to elicit cytotox-
icity and apoptotic and necrotic death of mammalian 
cancer cells due to the activity of a protein–polysac-
charide complex (Fiołka et al., 2013). Oligotyping of 
Raoultella ornithinolytica revealed consistent strain-
level compositional patterns within Eum. atala, P. flor-
idana, and Eub. sp. (Fig. 3). The leaf- and cone-feeding 
Eumaeus larvae are more vagile than the cone- and 
stem-feeding Pharaxanotha and Eubulus larvae, such 
that we might expect Eum. atala to be exposed to a 
greater diversity of bacteria in the environment. It is 
therefore somewhat unexpected that the Eum. atala 
caterpillars were dominated by only one oligotype. 
Raoultella ornithinolytica warrants further functional 

research to assess whether this bacterium provides 
critical benefit to cycadivorous insects, such as detoxi-
fication of their poisonous cycad host plants.

OTU 4 was identified with equal confidence to two 
bacterial genera, Pantoea and Klebsiella, and in our 
analysis it remains an unidentified member of the fam-
ily Enterobacteriaceae. Oligotyping revealed conserved 
strain-level compositional patterns in P. floridana and 
Eub. sp. for this OTU (Fig. 3). As these are the two 
least mobile insects in our dataset, it is unclear if this 
pattern arises from limited exposure to environmental 
bacteria, or from selection on the part of the host or gut 
environment. While it is unknown whether this bac-
terium might contribute to host nutrition or fitness, 
we can make some inferences based on its similarity 
to Pantoea and Klebsiella. Pantoea is a known gut sym-
biont in many insects, and it has been shown to confer 
nutritional benefits including nitrogen fixation, toxin 
degradation and hydrolysis of proteins (Sood & Nath, 
2002; MacCollom et al., 2009). Additionally, ingested 
Pantoea and Klebsiella have both been shown to colon-
ize the guts of insects and be subsequently vertically 
transmitted (Lauzon et al., 2009). Future work should 
focus on isolating and identifying this OTU and on 
characterizing its metabolic capabilities and symbiotic 
potential.

Of the remaining shared OTUs, two were initially 
identified by greengenes taxonomic assignment as 
Buchnera (OTU 249) and Wolbachia (OTU 85), both 
known insect symbionts. However, these assignments 
were not supported by the NCBI BLAST database, and 
both OTUs displayed little oligotypic variation. OTU 3 
(Unidentified Alicyclobacillaceae) showed no oligotypic 
variation across samples, despite being represented by 
a large number of reads (16 383). Bacteria in this fam-
ily are found in extreme environments, often growing 
at extreme temperatures or pH (Vos et al., 2009). With 
no information about the function of these bacteria 
or their symbiotic potential as well as their presence 
in the ‘outgroup’ butterfly samples, it is impossible to 
determine whether they have a functional relationship 
with their cycadivorous insects.

To our knowledge, this survey represents the first 
report of gut bacterial associations that are conserved 
among a phylogenetically and geographically dispar-
ate set of herbivores that share a common toxic host 
plant. By comparing the composition of gut bacterial 
communities of five species of cycad-feeding insects, 
we found that each insect harbours a distinctive spe-
cies-specific bacterial assemblage, with the exception 
of R. furfuraceaea weevil larvae and C. pandava cat-
erpillars that host similar communities of microbiota. 
Most importantly, we found that all five of the insect 
species share a core set of bacterial OTUs, which we 
believe warrant future functional study. We identified 
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one of these shared bacteria as Raoultella ornithinolyt-
ica, a species with documented anti-tumour and nitro-
gen fixation capabilities. Future comparative surveys 
of the microbiota of cycad herbivores should include 
a broader range of insect taxa, developmental stages 
and feeding ecologies, as well as an investigation into 
the functional profiles of core bacterial OTUs. Such 
studies would be invaluable in elucidating the role of 
microbial symbionts in mediating cycadivorous diets.
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