Molecular evolution of a long wavelength-sensitive opsin in mimetic Heliconius butterflies (Lepidoptera : Nymphalidae)

Citation:

Hsu R, Briscoe AD, Chang BSW, Pierce NE. Molecular evolution of a long wavelength-sensitive opsin in mimetic Heliconius butterflies (Lepidoptera : Nymphalidae). Biological Journal of the Linnean Society. 2001;72 :435-449.
2001_hsu_et_al.pdf552 KB

Date Published:

Mar

Abstract:

This study examines the pattern of opsin nucleotide and amino acid substitution among mimetic species 'rings' of Heliconius butterflies that are characterized by divergent wing colour patterns. A long wavelength opsin gene, OPS1, was sequenced from each of seven species of Heliconius and one species of Dryas (Lepidoptera: Nymphalidae). A parsimony analysis of OPS1 nucleotide and amino acid sequences resulted in a phylogeny that was consistent with that presented by Brewer & Egan in 1997, which was based on mitochondrial cytochrome oxidase I and II as well as nuclear wingless genes. Nodes in the OPS1 phylogeny were well supported by bootstrap analysis and decay indices. An analysis of specific sites within the gene indicates that the accumulation of amino acid substitutions has occurred independently of the morphological diversification of Heliconius wing colour patterns. Amino acid substitutions were examined with respect to their location within the opsin protein and their possible interactions with the chromophore and the G-protein. Of the 15 amino acid substitutions identified among the eight species, one nonconservative replacement (A226Q) was identified in a position that may be involved in binding with the G-protein. (C) 2001 The Linnean Society of London.

Notes:

423PZTimes Cited:20Cited References Count:63

Last updated on 12/22/2015