Phylogeny of Bicyclus (Lepidoptera : Nymphalidae) inferred from COI, COII, and EF-1 alpha gene sequences

Date Published:

Feb

Abstract:

Despite the fact that Bicyclus anynana has become an important model species for wing-pattern developmental biology and studies of phenotypic plasticity, little is known of the evolutionary history of the genus Bicyclus and the position of B. anynana. Understanding the evolution of development as well as the evolution of plasticity can be attempted in this species-rich genus that displays a large range of wing patterns with variable degrees of phenotypic responses to the environment. A context to guide extrapolations from population genetic studies within B. anynana to those between closely related species has been long overdue. A phylogeny of 54 of the 80 known Bicyclus species is presented based on the combined 3000-bp sequences of two mitochondrial genes, cytochrome oxidase I and II, and the nuclear gene, elongation factor I alpha. A series of tree topologies, constructed either from the individual genes or from the combined data, using heuristic searches under a variety of weighting schemes were compared under the best maximum-likelihood models fitted for each gene separately. The most likely tree topology to have generated the three data sets was found to be a tree resulting from a combined MP analysis with equal weights. Most phylogenetic signal for the analysis comes from silent substitutions at the third position, and despite the faster rate of evolution and higher levels of homoplasy of the mitochondrial genes relative to the nuclear gene, the latter does not show substantially stronger support for basal clades. Finally, moving branches from the chosen tree topology to other positions on the tree so as to comply better with a previous morphological study did not significantly affect tree length. (C) 2001 Academic Press.

Notes:

399PNTimes Cited:125Cited References Count:51

Last updated on 12/22/2015